Table of Contents
VLSI Design
Volume 4, Issue 3, Pages 199-205
http://dx.doi.org/10.1155/1996/29412

Closed Form Aliasing Probability For Q-ary Symmetric Errors

Motorola Computer Group, MD: DW278, 2900 S. Diablo Way, Tempe 85282, AZ, USA

Copyright © 1996 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In Built-In Self-Test (BIST) techniques, test data reduction can be achieved using Linear Feedback Shift Registers (LFSRs). A faulty circuit may escape detection due to loss of information inherent to data compaction schemes. This is referred to as aliasing. The probability of aliasing in Multiple-Input Shift-Registers (MISRs) has been studied under various bit error models. By modeling the signature analyzer as a Markov process we show that the closed form expression derived for aliasing probability previously, for MISRs with primitive polynomials under q-ary symmetric error model holds for all MISRs irrespective of their feedback polynomials and for group cellular automata signature analyzers as well. If the erroneous behaviour of a circuit can be modelled with q-ary symmetric errors, then the test circuit complexity and propagation delay associated with the signature analyzer can be minimized by using a set of m single bit LFSRs without increasing the probability of aliasing.