Table of Contents Author Guidelines Submit a Manuscript
VLSI Design
Volume 12 (2001), Issue 3, Pages 365-376

A Novel Low-power Shared Division and Square-root Architecture Using the GST Algorithm

1Broadcom Corporation, Irvine 92619, CA, USA
2Department of Electrical and Computer Engineering of the University of Minnesota, Minneapolis 55455, MN, USA

Received 20 June 2000; Revised 3 August 2000

Copyright © 2001 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Although SRT division and square-root approaches and GST division approach have been known for long time, square-root architectures based on the GST approach have not been proposed so far which do not require a final division/multiplication of the scale factor. A GST square-root architecture is developed without requiring either a multiplication to update the scaled square-root quotient in each iteration or a division/multiplication by the scaling factor after completing the square-root iterations. Additionally, quantitative comparison of speed and power consumption of GST and SRT division/square-root units are presented. Shared divider and square-root units are designed based on the SRT and the GST approaches, in minimally and maximally redundant radix-4 representations. Simulations demonstrate that the worst-case overall latency of the minimally-redundant GST architecture is 35% smaller compared to the SRT. Alternatively, for a fixed latency, the minimally-redundant GST architecture based division and square-root operations consume 32% and 28% less power, respectively, compared to the maximally-redundant SRT approach.