Table of Contents Author Guidelines Submit a Manuscript
VLSI Design
Volume 2010, Article ID 251210, 25 pages
http://dx.doi.org/10.1155/2010/251210
Research Article

Evolvable Block-Based Neural Network Design for Applications in Dynamic Environments

1Department of Electrical and Computer Engineering, George Washington University, 20101 Academic Way, Ashburn, VA 20147-2604, USA
2Department of Electrical Engineering and Computer Science, University of Tennessee, 414 Ferris Hall, Knoxville, TN 37996-2100, USA

Received 7 June 2009; Accepted 2 November 2009

Academic Editor: Ethan Farquhar

Copyright © 2010 Saumil G. Merchant and Gregory D. Peterson. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. G. Merchant and G. D. Peterson, “An evolvable artificial neural network platform for dynamic environments,” in Proceedings of the 51st Midwest Symposium on Circuits and Systems (MWSCAS '08), pp. 77–80, Knoxville, Tenn, USA, August 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. H. de Garis, “Evolvable Hardware: Principles and Practice,” Communications of the Association for Computer Machinery (CACM Journal), August 1997.
  3. J. N. H. Heemskerk, “Overview of neural hardware,” in Neurocomputers for Brain-Style Processing: Design, Implementation and Application, Unit of Experimental and Theoretical Psychology, Leiden University, Leiden, The Netherlands, 1995. View at Google Scholar
  4. H. P. Graf and L. D. Jackel, “Advances in neural network hardware,” in Proceedings of the International Electron Devices Meeting (IEDM '88), pp. 766–769, San Francisco, Calif, USA, December 1988. View at Publisher · View at Google Scholar · View at Scopus
  5. D. R. Collins and P. A. Penz, “Considerations for neural network hardware implementations,” in Proceedings of the 22nd IEEE International Symposium on Circuits and Systems (ISCAS '89), vol. 2, pp. 834–836, Portland, Ore, USA, May 1989. View at Scopus
  6. P. Ienne, “Architectures for neuro-computers: review and performance evaluation,” Tech. Rep. 93/21, Swiss Federal Institute of Technology, Zurich, Switzerland, 1993. View at Google Scholar
  7. P. Ienne and G. Kuhn, “Digital systems for neural networks,” in Digital Signal Processing Technology, P. Papamichalis and R. Kerwin, Eds., vol. 57, SPIE Optical Engineering, Orlando, Fla, USA, 1995. View at Google Scholar
  8. I. Aybay, S. Cetinkaya, and U. Halici, “Classification of neural network hardware,” Neural Network World, vol. 6, no. 1, pp. 11–29, 1996. View at Google Scholar · View at Scopus
  9. H. C. Card, G. K. Rosendahl, D. K. McNeill, and R. D. McLeod, “Competitive learning algorithms and neurocomputer architecture,” IEEE Transactions on Computers, vol. 47, no. 8, pp. 847–858, 1998. View at Google Scholar · View at Scopus
  10. T. Schoenauer, A. Jahnke, U. Roth, and H. Klar, “Digital neurohardware: principles and perspectives,” in Proceedings of the 3rd International Workshop on Neural Networks in Applications (NN '98), Magdeburg, Germany, February 1998.
  11. L. M. Reyneri, “Theoretical and implementation aspects of pulse streams: an overview,” in Proceedings of the 7th International Conference on Microelectronics for Neural, Fuzzy and Bio-Inspired Systems, pp. 78–89, Granada, Spain, April 1999.
  12. B. Linares-Barranco, A. G. Andreou, G. Indiveri, and T. Shibata, “Special issue on neural networks hardware implementations,” IEEE Transactions on Neural Networks, vol. 14, no. 5, pp. 976–979, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Zhu and P. Sutton, “FPGA implementations of neural networks—a survey of a decade of progress,” in Proceedings of the 13th International Conference on Field-Programmable Logic and Applications (FPL '03), pp. 1062–1066, Lisbon, Portugal, September 2003. View at Scopus
  14. N. Aibe, M. Yasunaga, I. Yoshihara, and J. H. Kim, “A probabilistic neural network hardware system using a learning-parameter parallel architecture,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '02), vol. 3, pp. 2270–2275, Honolulu, Hawaii, USA, May 2002. View at Scopus
  15. J. L. Ayala, A. G. Lomeña, M. López-Vallejo, and A. Fernández, “Design of a pipelined hardware architecture for real-time neural network computations,” in Proceedings of the 45th Midwest Symposium on Circuits and Systems (MWSCAS '02), vol. 1, pp. 419–422, Tulsa, Okla, USA, August 2002. View at Scopus
  16. U. Ramacher, “Synapse-X: a general-purpose neurocomputer architecture,” in Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN '91), vol. 3, pp. 2168–2176, Seattle, Wash, USA, July 1991.
  17. M. Moussa, S. Areibi, and K. Nichols, “On the arithmetic precision for implementing back-propagation networks on FPGA: a case study,” in FPGA Implementations of Neural Networks, A. R. Omondi and J. C. Rajapakse, Eds., pp. 37–61, Springer, Berlin, Germany, 2006. View at Google Scholar
  18. K. R. Nichols, M. A. Moussa, and S. M. Areibi, “Feasibility of floating-point arithmetic in FPGA based artificial neural networks,” in Proceedings of the 15th International Conference on Computer Applications in Industry and Engineering (CAINE '02), San Diego, Calif, USA, November 2002.
  19. J. L. Holt and T. E. Baker, “Back propagation simulations using limited precision calculations,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '91), pp. 121–126, Seattle, Wash, USA, July 1991. View at Publisher · View at Google Scholar · View at Scopus
  20. J. L. Holt and J.-N. Hwang, “Finite precision error analysis of neural network electronic hardware implementations,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN'91), pp. 519–525, Seattle, Washington, USA, July 1991.
  21. J. L. Holt and J.-N. Hwang, “Finite precision error analysis of neural network hardware implementations,” IEEE Transactions on Computers, vol. 42, no. 3, pp. 281–290, 1993. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Ros, E. M. Ortigosa, R. Agis, R. Carrillo, and M. Arnold, “Real-time computing platform for spiking neurons (RT-spike),” IEEE Transactions on Neural Networks, vol. 17, no. 4, pp. 1050–1063, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Porrmann, U. Witkowski, H. Kalte, and U. Ruckert, “Implementation of artificial neural networks on a reconfigurable hardware accelerator,” in Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-Based Processing, pp. 243–250, Canary Islands, Spain, January 2002. View at Publisher · View at Google Scholar
  24. C. Torres-Huitzil and B. Girau, “FPGA implementation of an excitatory and inhibitory connectionist model for motion perception,” in Proceedings of IEEE International Conference on Field Programmable Technology (FPT '05), pp. 259–266, Singagore, December 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Kothandaraman, “Implementation of block-based neural networks on reconfigurable computing platforms,” MS Report, Electrical and Computer Engineering Department, University of Tennessee, Knoxville, Tenn, USA, 2004. View at Google Scholar
  26. D. Ferrer, R. González, R. Fleitas, J. P. Acle, and R. Canetti, “NeuroFPGA—implementing artificial neural networks on programmable logic devices,” in Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE '04), vol. 3, pp. 218–223, Paris, France, February 2004. View at Scopus
  27. C. T. Yen, W.-D. Weng, and Y. T. Lin, “FPGA realization of a neural-network-based nonlinear channel equalizer,” IEEE Transactions on Industrial Electronics, vol. 51, no. 2, pp. 472–479, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. Q. Wang, B. Yi, Y. Xie, and B. Liu, “The hardware structure design of perceptron with FPGA implementation,” in Proceedings of IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 762–767, Washington, DC, USA, October 2003. View at Scopus
  29. M. M. Syiam, H. M. Klash, I. I. Mahmoud, and S. S. Haggag, “Hardware implementation of neural network on FPGA for accidents diagnosis of the multi-purpose research reactor of Egypt,” in Proceedings of the 15th International Conference on Microelectronics (ICM '03), pp. 326–329, Cairo, Egypt, December 2003. View at Publisher · View at Google Scholar
  30. M. Krips, T. Lammert, and A. Kummert, “FPGA implementation of a neural network for a real-time hand tracking system,” in Proceedings of the 1st IEEE International Workshop on Electronic Design, Test and Applications, pp. 313–317, Christchurch, New Zealand, January 2002. View at Publisher · View at Google Scholar
  31. J. Zhu, G. J. Milne, and B. K. Gunther, “Towards an FPGA based reconfigurable computing environment for neural network implementations,” in Proceedings of the 9th International Conference on Artificial Neural Networks (ICANN '99), vol. 2, pp. 661–666, Edinburgh, UK, September 1999. View at Scopus
  32. S. Happe and H.-G. Kranz, “Practical applications for the machine intelligent partial discharge disturbing pulse suppression system NeuroTEK II,” in Proceedings of the 11th International Symposium on High Voltage Engineering (ISH '99), vol. 5, pp. 37–40, London, UK, August 1999. View at Scopus
  33. M. Marchesi, G. Orlandi, F. Piazza, and A. Uncini, “Fast neural networks without multipliers,” IEEE Transactions on Neural Networks, vol. 4, no. 1, pp. 53–62, 1993. View at Publisher · View at Google Scholar · View at Scopus
  34. M. van Daalen, T. Kosel, P. Jeavons, and J. Shawe-Taylor, “Emergent activation functions from a stochastic bit-stream neuron,” Electronics Letters, vol. 30, no. 4, pp. 331–333, 1994. View at Publisher · View at Google Scholar · View at Scopus
  35. E. van Keulen, S. Colak, H. Withagen, and H. Hegt, “Neural network hardware performance criteria,” in Proceedings of IEEE International Conference on Neural Networks, vol. 3, pp. 1955–1958, Orlando, Fla, USA, June 1994. View at Publisher · View at Google Scholar · View at Scopus
  36. H. O. Johansson, P. Larsson, P. Larsson-Edefors, and C. Svensson, “A 200-MHz CMOS bit-serial neural network,” in Proceedings of the 7th Annual IEEE International ASIC Conference and Exhibit, pp. 312–315, Rochester, NY, USA, September 1994. View at Scopus
  37. M. Gschwind, V. Salapura, and O. Maischbergeres, “Space efficient neural net implementation,” in Proceedings of the 2nd International ACM/SIGDA Workshop on Field-Programmable Gate Arrays, Berkeley, Calif, USA, February 1994.
  38. A. F. Murray and A. V. W. Smith, “Asynchronous VLSI neural networks using pulse-stream arithmetic,” IEEE Journal of Solid-State Circuits, vol. 23, no. 3, pp. 688–697, 1988. View at Google Scholar · View at Scopus
  39. P. Lysaght, J. Stockwood, J. Law, and D. Girma, “Artificial neural network implementation on a fine-grained FPGA,” in Proceedings of the 4th International Workshop on Field-Programmable Logic and Applications (FPL '94), pp. 421–431, Prague, Czech Republic, September 1994. View at Publisher · View at Google Scholar
  40. V. Salapura, “Neural networks using bit stream arithmetic: a space efficient implementation,” in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '94), vol. 6, pp. 475–478, London, UK, May 1994. View at Scopus
  41. N. Chujo, S. Kuroyanagi, S. Doki, and S. Okuma, “An iterative calculation method of neuron model with sigmoid function,” in Proceedings of IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 1532–1537, Tucson, Ariz, USA, October 2001. View at Scopus
  42. S. A. Guccione and M. J. Gonzalez, “Neural network implementation using reconfigurable architectures,” in Selected Papers from the Oxford 1993 International Workshop on Field Programmable Logic and Applications on More FPGAs, pp. 443–451, Abingdon EE & CS Books, Oxford, UK, 1994. View at Google Scholar
  43. L. Mintzer, “Digital filtering in FPGAs,” in Proceedings of the 28th Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 1373–1377, Pacific Grove, Calif, USA, November 1994. View at Publisher · View at Google Scholar
  44. T. Szabo, L. Antoni, G. Horvath, and B. Feher, “A full-parallel digital implementation for pre-trained NNs,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '00), vol. 2, pp. 49–54, Como, Italy, July 2000. View at Scopus
  45. B. Noory and V. Groza, “A reconfigurable approach to hardware implementation of neural networks,” in Proceedings of the Canadian Conference on Electrical and Computer Engineering, vol. 3, pp. 1861–1864, Montreal, Canada, May 2003. View at Scopus
  46. E. Pasero and M. Perri, “Hw-Sw codesign of a flexible neural controller through a FPGA-based neural network programmed in VHDL,” in Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN '04), vol. 4, pp. 3161–3165, Budapest, Hungary, July 2004. View at Scopus
  47. C.-H. Kung, M. J. Devaney, C.-M. Kung, C.-M. Huang, Y.-J. Wang, and C.-T. Kuo, “The VLSI implementation of an artificial neural network scheme embedded in an automated inspection quality management system,” in Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference (IMTC '02), vol. 1, pp. 239–244, Anchorage, Alaska, USA, May 2002. View at Scopus
  48. J. G. Eldredge and B. L. Hutchings, “Density enhancement of a neural network using FPGAs and run-time reconfiguration,” in Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, pp. 180–188, Napa Valley, Calif, USA, April 1994. View at Publisher · View at Google Scholar · View at Scopus
  49. J. G. Eldredge and B. L. Hutchings, “RRANN: a hardware implementation of the backpropagation algorithm using reconfigurable FPGAs,” in Proceedings of IEEE International Conference on Neural Networks, IEEE World Congress on Computational Intelligence, vol. 4, pp. 2097–2102, Orlando, Fla, USA, June 1994. View at Publisher · View at Google Scholar · View at Scopus
  50. C. E. Cox and W. E. Blanz, “GANGLION—a fast field-programmable gate array implementation of a connectionist classifier,” IEEE Journal of Solid-State Circuits, vol. 27, no. 3, pp. 288–299, 1992. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Perez-Uribe and E. Sanchez, “FPGA implementation of an adaptable-size neural network,” in Proceedings of the 6th International Conference on Artificial Neural Networks (ICANN '96), pp. 383–388, Bochum, Germany, July 1996. View at Publisher · View at Google Scholar
  52. H. F. Restrepo, R. Hoffmann, A. Perez-Uribe, C. Teuscher, and E. Sanchez, “A networked FPGA-based hardware implementation of a neural network application,” in Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 337–338, Napa Valley, Calif, USA, April 2000. View at Publisher · View at Google Scholar
  53. I. Kajitani, M. Murakawa, D. Nishikawa et al., “An evolvable hardware chip for prosthetic hand controller,” in Proceedings of the 7th International Conference on Microelectronics for Neural, Fuzzy and Bio-Inspired Systems (MicroNeuro '99), pp. 179–186, Granada, Spain, April, 1999. View at Publisher · View at Google Scholar
  54. K. Mathia and J. Clark, “On neural network hardware and programming paradigms,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '02), vol. 3, pp. 2692–2697, Honolulu, Hawaii, USA, June 2002. View at Scopus
  55. D. Hajtas and D. Durackova, “The library of building blocks for an “integrate & fire” neural network on a chip,” in Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN '04), vol. 4, pp. 2631–2636, Budapest, Hungary, July 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. Jayadeva and S. A. Rahman, “A neural network with O(N) neurons for ranking N numbers in O(1/N) time,” IEEE Transactions on Circuits and Systems I, vol. 51, no. 10, pp. 2044–2051, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. J. D. Hadley and B. L. Hutchings, “Design methodologies for partially reconfigured systems,” in Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines, pp. 78–84, Napa Valley, Calif, USA, April 1995. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Gadea, J. Cerda, F. Ballester, and A. Macholi, “Artificial neural network implementation on a single FPGA of a pipelined on-line backpropagation,” in Proceedings of the 13th International Symposium on System Synthesis, pp. 225–230, Madrid, Spain, September 2000.
  59. K. Paul and S. Rajopadhye, “Back-propagation algorithm achieving 5 Gops on the Virtex-E,” in FPGA Implementations of Neural Networks, pp. 137–165, Springer, Berlin, Germany, 2006. View at Google Scholar
  60. U. Witkowski, T. Neumann, and U. Ruckert, “Digital hardware realization of a hyper basis function network for on-line learning,” in Proceedings of the 7th International Conference on Microelectronics for Neural, Fuzzy and Bio-Inspired Systems (MicroNeuro '99), pp. 205–211, Granada, Spain, April 1999. View at Publisher · View at Google Scholar
  61. M. Murakawa, S. Yoshizawa, I. Kajitani et al., “The GRD chip: genetic reconfiguration of DSPs for neural network processing,” IEEE Transactions on Computers, vol. 48, no. 6, pp. 628–639, 1999. View at Google Scholar · View at Scopus
  62. D. Hammerstrom, “A VLSI architecture for high-performance, low-cost, on-chip learning,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '90), vol. 2, pp. 537–544, San Diego, Calif, USA, June 1990. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Sato, K. Shibata, M. Asai et al., “Development of a high-performance, general purpose neuro-computer composed of 512 digital neurons,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '93), vol. 2, pp. 1967–1970, Nagoya, Japan, October 1993. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Tang, O. Ishizuka, and H. Matsumoto, “Backpropagation learning in analog T-model neural network hardware,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '93), vol. 1, pp. 899–902, Nagoya, Japan, October 1993. View at Publisher · View at Google Scholar · View at Scopus
  65. B. Linares-Barranco, E. Sanchez-Sinencio, A. Rodriguez-Vazquez, and J. L. Huertas, “A CMOS analog adaptive BAM with on-chip learning and weight refreshing,” IEEE Transactions on Neural Networks, vol. 4, no. 3, pp. 445–455, 1993. View at Publisher · View at Google Scholar · View at Scopus
  66. E. Farquhar, C. Gordon, and P. Hasler, “A field programmable neural array,” in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '06), pp. 4114–4117, Kos, Greece, May 2006. View at Scopus
  67. F. Tenore, R. J. Vogelstein, R. Etienne-Cummings, G. Cauwenberghs, M. A. Lewis, and P. Hasler, “A spiking silicon central pattern generator with floating gate synapses [robot control applications],” in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '05), vol. 4, pp. 4106–4109, Kobe, Japan, May 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. G. Indiveri, E. Chicca, and R. J. Douglas, “A VLSI reconfigurable network of integrate-and-fire neurons with spike-based learning synapses,” in Proceedings of the 12th European Symposium on Artificial Neural Networks (ESANN '04), Bruges, Belgium, April 2004.
  69. B. Girau, “FPNA: applications and implementations,” in FPGA Implementations of Neural Networks, pp. 103–136, Springer, Berlin, Germany, 2006. View at Google Scholar
  70. B. Girau, “FPNA: concepts and properties,” in FPGA Implementations of Neural Networks, pp. 63–101, Springer, Berlin, Germany, 2006. View at Google Scholar
  71. M. Holler, S. Tam, H. Castro, and R. Benson, “An electrically trainable artificial neural network (ETANN) with 10240 ‘floating gate’ synapses,” in Artificial Neural Networks: Electronic Implementations, pp. 50–55, IEEE, New York, NY, USA, 1990. View at Google Scholar
  72. M. L. Mumford, D. K. Andes, and L. L. Kern, “The Mod 2 Neurocomputer system design,” IEEE Transactions on Neural Networks, vol. 3, no. 3, pp. 423–433, 1992. View at Publisher · View at Google Scholar · View at Scopus
  73. T. Schmitz, S. Hohmann, K. Meier, J. Schemmel, and F. Schurmann, “Speeding up hardware evolution: a coprocessor for evolutionary algorithms,” in Evolvable Systems: From Biology to Hardware, vol. 2606 of Lecture Notes in Computer Science, pp. 274–285, Springer, Berlin, Germany, 2003. View at Publisher · View at Google Scholar
  74. A. Omondi, J. Rajapakse, and M. Bajger, “FPGA neurocomputers,” in FPGA Implementations of Neural Networks, pp. 1–36, Springer, Berlin, Germany, 2006. View at Google Scholar
  75. L. D. Jackel, H. P. Graf, and R. E. Howard, “Electronic neural network chips,” Applied Optics, vol. 26, no. 23, pp. 5077–5080, 1987. View at Google Scholar · View at Scopus
  76. E. Farquhar and P. Hasler, “A bio-physically inspired silicon neuron,” IEEE Transactions on Circuits and Systems I, vol. 52, no. 3, pp. 477–488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. B. Linares-Barranco, E. Sanchez-Sinencio, A. Rodriguez-Vazquez, and J. L. Huertas, “A modular T-mode design approach for analog neural network hardware implementations,” IEEE Journal of Solid-State Circuits, vol. 27, no. 5, pp. 701–713, 1992. View at Publisher · View at Google Scholar · View at Scopus
  78. C. Gordon, E. Farquhar, and P. Hasler, “A family of floating-gate adapting synapses based upon transistor channel models,” in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '04), vol. 1, pp. 317–320, Vancouver, Canada, May 2004. View at Scopus
  79. E. Farquhar, D. Abramson, and P. Hasler, “A reconfigurable bidirectional active 2 dimensional dendrite model,” in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '04), vol. 1, pp. 313–316, Vancouver, Canada, May 2004. View at Scopus
  80. G. Cauwenberghs, C. F. Neugebauer, and A. Yariv, “An adaptive CMOS matrix-vector multiplier for large scale analog hardware neural network applications,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '91), vol. 1, pp. 507–511, Seattle, Wash, USA, July 1991. View at Publisher · View at Google Scholar · View at Scopus
  81. O. Barkan, W. R. Smith, and G. Persky, “Design of coupling resistor networks for neural network hardware,” IEEE Transactions on Circuits and Systems, vol. 37, no. 6, pp. 756–765, 1990. View at Publisher · View at Google Scholar · View at Scopus
  82. T. J. Schwartz, “A neural chips survey,” AI Expert, vol. 5, no. 12, pp. 34–38, 1990. View at Google Scholar
  83. A. J. Agranat, C. F. Neugebauer, and A. Yariv, “A CCD based neural network integrated circuit with 64 K analog programmable synapses,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '90), vol. 2, pp. 551–555, San Diego, Calif, USA, June 1990. View at Publisher · View at Google Scholar · View at Scopus
  84. L. W. Massengill and D. B. Mundie, “An analog neural hardware implementation using charge-injection multipliers and neuron-specific gain control,” IEEE Transactions on Neural Networks, vol. 3, no. 3, pp. 354–362, 1992. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Passos Almeida and J. E. Franca, “A mixed-mode architecture for implementation of analog neural networks with digital programmability,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '93), vol. 1, pp. 887–890, Nagoya, Japan, October 1993. View at Publisher · View at Google Scholar · View at Scopus
  86. M. R. DeYong, R. L. Findley, and C. Fields, “The design, fabrication, and test of a new VLSI hybrid analog-digital neural processing element,” IEEE Transactions on Neural Networks, vol. 3, no. 3, pp. 363–374, 1992. View at Publisher · View at Google Scholar · View at Scopus
  87. E. Sackinger, B. E. Boser, J. Bromley, Y. LeCun, and L. D. Jackel, “Application of the ANNA neural network chip to high-speed character recognition,” IEEE Transactions on Neural Networks, vol. 3, no. 3, pp. 498–505, 1992. View at Publisher · View at Google Scholar · View at Scopus
  88. G. Zatorre-Navarro, N. Medrano-Marqués, and S. Celma-Pueyo, “Analysis and simulation of a mixed-mode neuron architecture for sensor conditioning,” IEEE Transactions on Neural Networks, vol. 17, no. 5, pp. 1332–1335, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. K. D. Maier, C. Beckstein, R. Blickhan, W. Erhard, and D. Fey, “A multi-layer-perceptron neural network hardware based on 3D massively parallel optoelectronic circuits,” in Proceedings of the 6th International Conference on Parallel Interconnects, pp. 73–80, Anchorage, Alaska, USA, October 1999. View at Publisher · View at Google Scholar
  90. M. P. Craven, K. M. Curtis, and B. R. Hayes-Gill, “Consideration of multiplexing in neural network hardware,” IEE Proceedings: Circuits, Devices and Systems, vol. 141, no. 3, pp. 237–240, 1994. View at Publisher · View at Google Scholar · View at Scopus
  91. S.-W. Moon and S.-G. Kong, “Block-based neural networks,” IEEE Transactions on Neural Networks, vol. 12, no. 2, pp. 307–317, 2001. View at Publisher · View at Google Scholar · View at Scopus
  92. W. Jiang, S. G. Kong, and G. D. Peterson, “ECG signal classification using block-based neural networks,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '05), vol. 1, pp. 326–331, Montreal, Canada, July 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. W. Jiang, S. G. Kong, and G. D. Peterson, “Continuous heartbeat monitoring using evolvable block-based neural networks,” in Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN '06), pp. 1950–1957, Vancouver, Canada, July 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. W. Jiang and S. G. Kong, “Block-based neural networks for personalized ECG signal classification,” IEEE Transactions on Neural Networks, vol. 18, no. 6, pp. 1750–1761, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. S. G. Kong, “Time series prediction with evolvable block-based neural networks,” in Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN '04), vol. 2, pp. 1579–1583, Budapest, Hungary, July 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Merchant, G. D. Peterson, S. K. Park, and S. G. Kong, “FPGA implementation of evolvable block-based neural networks,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC '06), pp. 3129–3136, Vancouver, Canada, July 2006. View at Scopus
  97. Xilinx, “Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet,” Product Specification, DS083 (v4.6), March 2007.
  98. Xilinx, “Xilinx University Program Virtex-II Pro Development System Hardware Reference Manual,” Hardware Reference Manual, UG069 (v1.0), March 2005.
  99. Amirix, “AMIRIX Systems Inc. PCI Platform FPGA Development Board Users Guide,” User Guide, DOC-003266 Version 06, June 2004.
  100. R. Fisher, “The use of multiple measurements in taxonomic problems,” Annals of Eugenics, vol. 7, pp. 179–188, 1936. View at Google Scholar