Research Article  Open Access
Zhijun Zhou, Tao Yang, Haobo Fan, "A FullScale Field Study on Bearing Characteristics of CastinPlace Piles with Different HoleForming Methods in Loess Area", Advances in Civil Engineering, vol. 2019, Article ID 1450163, 12 pages, 2019. https://doi.org/10.1155/2019/1450163
A FullScale Field Study on Bearing Characteristics of CastinPlace Piles with Different HoleForming Methods in Loess Area
Abstract
This paper presents the results from a fullscale field study on the 3 different types of castinplace piles: rotary drilling piles (RDPs), manual digging piles (MDPs), and impact drilling piles (IDPs), for a bridge construction project of Wuqi–Dingbian Expressway, in Shaanxi. The results indicate that under the similar conditions, MDP exhibits the largest bearing capacity (11000 kN) in the loess area, followed by RDP (9000 kN) and IDP (8000 kN). And all tested values exceed the estimated value (7797.9 KN), indicating that the calculation formula of bearing capacity recommended by the Chinese standard is safe and conservative. During the load transfer process, the axial force attenuation rate of the pile body increases with pile side resistance. The average attenuation rate of MDP is the largest (24.2%), followed by RDP (19.72%) and IDP (16.69%). The bearing characteristics of these test piles are mainly pile side resistance, but the manual digging method created the least amount of disturbance to the soil around the pile, and due to its hole wall being rough, this enhances the pilesoil interactions. Holeforming methods mainly affect the exertion of pile side resistance compared with pile end resistance. In view of pile side resistance and pile end resistance not taking effect at the same time, degree of exertion of these 2 resistances should be considered when designing castinplace piles in loess areas, and different partial coefficients should be used.
1. Introduction
Pile foundations have been developed for thousands of years since the discovery of early pile foundation sites in the Republic of Chile. Up to now, pile foundations are also the most widely used building foundations or supporting structures [1–4]. When surface soils are too loose (soft) to support the shallow foundation safely and economically, such geotechnical structures can be used to better distribute the loads through the soil (friction piles) or transmit loads to a stronger soil layer at depths (endbearing piles) [5–7]. As one of the most representative pile forms, castinplace piles are widely used in bridge and other engineering fields because of their great advantages (moderate cost, convenient construction, low construction noise, etc.) [8–12].
Loess is widely distributed in Asia (74°N32°N, based on data from Baidu Encyclopedia), especially in the central and western regions of China, where there is continuous development of China's economy and infrastructures in the promotion of the Belt and Road program; a large number of transportation networks are being built in the loess area, and castinplace piles will be widely used in this process. According to incomplete statistics, in China alone, the annual use of castinplace piles are at least 1 million or more [13–17]. Loess has strong structural characteristics. The construction of castinplace piles in the loess strata will inevitably destroy the structure of loess, which will affect the mechanical properties of loess and pilesoil relationship [18–21]. There are many research studies on the holeforming methods and loess in the castinplace pile foundation engineering, but the influences of holeforming methods on the bearing capacity of pile foundation are not universal [22–27]. Meanwhile, the influence of holeforming methods on the bearing capacity of the pile foundation is also related to geological conditions, foundation forms, etc. Therefore, the influences of holeforming methods on bearing characteristics of castinplace piles in the loess are uncertain and need further research [28–30].
Presently, the castinplace piles for bridge engineering in the loess area mainly include rotary drilling piles (RDPs), manual digging piles (MDPs), and impact drilling piles (IDPs) [31–34]. There are obvious differences between the piles with different holeforming methods (as shown in Table 1) [35–38]. Many researchers [39–41] have analyzed the characteristics of these piles for different purposes; however, very few studies in the literature offer the sidebyside comparison. Based on this, combined with the actual situation of Wuqi–Dingbian Expressway test area, static load tests of RDP, MDP, and IDP have been carried out. The influence of the holeforming methods on the bearing characteristics of the castinplace piles is analyzed from the following aspects: (1) pile body settlement; (2) transfer law of axial force for the pile body; (3) distribution of the pile side resistance; and (4) exertion degree of pile end resistance.

2. Structural Characteristics of Loess
Structural characteristics are the intrinsic characteristic of soil. The structure of soil essentially includes the cementation and the composition (as shown in Figure 1). The former reflects the characteristics of soil skeleton connection while the latter reflects the geometrical and spatial characteristics of soil skeleton. Many research studies show that loess has strong structural characteristics [43–45]. Loess deformation is mainly elastic before its original microstructure is destroyed under certain disturbance, and its pore pressure is also elastic pore pressure, which has no effect on the effective stress of soil skeleton, so the strength of soil will not change greatly [46, 47]. Once the structure of the soil has been destroyed, it will cause a series of adverse effects (such as the generation of plastic pore pressure, the decrease of effective stress, and the deterioration of mechanical properties). The construction of piles in loess will inevitably cause great disturbance and destroy the structure of loess, which will affect the mechanical properties of loess and the pilesoil relationship.
3. Project Site and Subsoil Profile
Wuqi–Dingbian Expressway (Figure 2) is located in Yan’an city and Yulin city, Shaanxi Province, China. The starting point of the expressway is located in Zoumatai, east of Wuqi County and ends in Shijingzi, southeast of Dingbian County. The expressway has an approximately total length of 92.22 km and is an important part of the 3rd vertical Dingbian to Hanzhong expressway in the network “2637” planned by Shaanxi Province. The abutments on both sides of the test area are located on the loess LiangMao region (the loess hilly area can be divided into 2 types according to its shape: the long strip is called “Liang” and the oval or round shape is called “Mao” © Baidu Encyclopedia), and the topographic relief of the abutment area is small. The ground elevation is 1629.60–1644.59 m with a relative height difference about 14.99 m.
The groundwater in the test area is deeply buried, and there is no groundwater distribution in the depth of drill hole (the depth of drilling is 60 m). According to the drilling results, soils in the test area are all in slightly wet and hard plastic state. Table 2 is the detailed characteristics of the soil in drill hole sampling.
 
f_{a0} is the bearing capacity of soil strata and q_{ik} is the friction resistance. 
4. Static Load Test
4.1. Bearing Capacity Estimation
To ensure the safety and reliability of the test, the bearing capacity of the pile (as shown in Table 3) was estimated by using formula (1) recommended in Chinese standard [48] before the test:where is the total pile side resistance; is the total pile end resistance; μ is the perimeter of pile body; is the pile side resistance of the ilayer soil around the pile (the friction resistance is the pile side resistance in friction piles); is the specific penetration resistance near the pile end, and its value can be directly determined in the standard [48], according to parameters (such as the soil properties, the diameter of pile, and the length of pile); l_{i} is the length of the pile passing through each layer of soil; is the correction coefficient of pile end resistance (when the pile length is between 10 and 30, is interpolated between 0.75 and 0.90 according to the standard); and is the pile end area.

4.2. Test Design and Procedure
From Figure 3, it is noted that the roughness of every pile wall is different due to the different holeforming methods. Compared with impact drilling method, the other 2 methods have less disturbance to the soil around the pile, and spade and rotary drilling rig continuously cut the soil in the hole, resulting in rough hole wall. And compared with IDP, the hole wall of MDP is rougher.
(a)
(b)
(c)
Referring to the Chinese standard [49], the onsite static load test (Figure 4) was carried out. The results of the test for 3 different types of castinplace piles (MDP, RDP, and IDP) have been compared and analyzed. The pile diameter and length of the 3 test piles were all 1.5 m and 25.0 m. The diameter and the length of the anchor pile (AP) were 1.5 m and 30.0 m separately. The test piles were constructed with C30 concrete, and C40 concrete was used to reinforce the part 1.5 m away from the top of the piles. The anchor piles (APs) were all RDP, and all of them were cast by C30 concrete. The rebar used for the test piles was configured according to standard [49]. Meanwhile, 3 rows of rebar strain gauges were installed on the sides of the piles, and 7 rebar strain gauges were arranged in sequence along the pile at 0.5 m, 3.5 m, 6.5 m, 11 m, 15.5 m, 20.0 m, and 24.5 m (Figure 5). The distance between 2 adjacent anchor piles was 7.0 m, and the test piles were arranged in the center of the adjacent 4 anchor piles. The rebar used in the anchor piles was also configured according to the standard [49]. To fully study the bearing characteristics of test piles with different holeforming methods, all 3 test piles were loaded to failure in field tests.
5. Analysis of the Test Results
5.1. Ultimate Bearing Capacity of Single Pile
The QS curves of the 3 test piles, as shown in Figure 6, are overall steeply descending. And according to the standard [49], for such steeply descending QS curve, the inflection point is the ultimate bearing capacity. Therefore, the ultimate bearing capacities of MDP, RDP, and IDP are 11000 kN, 9000 kN, and 8000 kN, respectively. The corresponding settlements are 10.89 mm, 7.22 mm, and 3.35 mm. The bearing capacities of the 3 test piles obtained from the test are all larger than the estimated value (7797.9 kN), indicating that the bearing capacity estimated by the recommended formula (formula (1)) of the Chinese standard is safe and conservative. However, the bearing capacities of these piles are quite different, which further illustrates that different holeforming methods will have different effects on the improvement of bearing capacity of castinplace piles.
The maximum load applied on the MDP, RDP, and IDP is 12000 kN, 12000 kN, and 14000 kN, respectively. Meanwhile, the corresponding maximum settlements are 77.49 mm, 72.86 mm, and 63.9 mm. With the removal of the upper load, the final settlement values of MDP, RDP, and IDP are 63.58 mm, 63.72 mm, and 55.51 mm, where the pile body rebound displacement of MDP is the largest (13.91 mm), followed by RDP (9.15 mm) and IDP (8.14 mm). In the process of unloading on the pile top, the QS curves have been shown as a gentle rebound curve (Figure 6), indicating that the rebound value has a close relationship with the load applied on the pile top. The rebounds of settlement are mainly composed of elastic compression of the pile, followed by the back friction caused by the restoration of soil structure during the dissipation of frictional forces between piles and soils [50–53].
5.2. Transfer and Attenuation of Axial Force
By analysis of the field test data, the distribution of axial forces for MDP, RDP, and IDP is shown in Figures 7–9, respectively. Along the pile body, the regularities of distribution for these test piles are basically the same, which gradually decrease from top to bottom. And under the similar load, pile end resistance of IDP is the largest, followed by RDP and MDP. The results suggest that IDP has the best effect of pile end resistance, while, for MDP, pile side resistance exerts the best effect.
Under the action of axial load, the pile top will generate axial displacement (settlement), which is the sum of elastic compression of pile body and soil compression of pile end. When the pile moves downward relative to soil, pile side frictional resistance acting upward on the pile will generate. In the process of load transferring downward along the pile body, the friction must be overcome continuously, which leads to the decrease of the axial force of the pile body with the increasing strata depth. When the axial force is transferred to the pile end, the axial force will be balanced by the pile end soil support. The axial force attenuation rate represents the effect of pile side resistance, and the effect of pile side resistance increases with the axial force attenuation rate.
The attenuation rates of the axial forces of these piles are approximately the same. It is assumed that the axial force attenuation rate of the test pile is :where is the axial force on the i section of pile body; is the axial force on the section of pile body; and is the number of rebar meter.
Formula (2) can be used to calculate the axial force attenuation rates of these test piles, as shown in Figure 10. The variations of the axial force attenuation rates for these test piles are basically the same under all levels of load: all decreasing firstly, then increasing and decreasing lastly. The maximum, minimum, and average attenuation rates of axial force for MDP, RDP, and IDP are 26.13%, 21.22%, and 18.4%; 20.5%, 17.22%, and 14.53%; and 24.2%, 19.72%, and 16.69%, respectively.
5.3. Pile Side Friction Resistance Distribution
5.3.1. Distribution along the Pile Body
Under the similar load conditions, pile side resistances of these test piles level vary in different sections of their pile bodies (Figures 11–13). However, along their pile bodies, these pile side resistances’ variations are roughly the same: all increase firstly and then decrease. Pile side resistances of all test piles reach the peak at the section of 11 m from the top of the pile and then the curve of IDP reaches the second peak at the bottom of the pile body. The peaks of these curves are related to the characteristics of the soil around the pile and pilesoil interactions [54–57].
As shown in Figure 14, when the load applied to the pile top is same, pile side resistance of MDP is the largest, followed by RDP and IDP. The result suggests that the concrete protection wall of MDP is conducive for the development of pile side resistance and enhancement of pilesoil interactions. Meanwhile, IDP will form a 2–3 mm thick mud cake around the pile during the construction process, which reduces the pilesoil interactions and is not conducive to the exertion of pile side resistance.
5.3.2. The Relationship between Pile Side Resistance and PileSoil Relative Displacement
As shown in Figure 15, when the pilesoil relative displacements are less than 5 mm, pile side resistances of these test piles increase sharply with the displacements; however, as the relative displacements continue to increase, pile side resistances of these test piles increase slowly. When the relative displacements are the same, the MDP has the largest pile side resistance, followed by RDP and IDP.
5.4. Effect of Pile End Resistance
5.4.1. Pile End Resistance under Various Loads
From Figure 16, the pile end resistances of these test piles increase with the upper loads. And under the similar load, IDP’s pile end resistance is the largest, followed by RDP and MDP. This indicates that during the process of applying load, the ratio of pile end resistance for IDP is larger than the other 2 piles in the total resistance, and pile end resistance has the greatest impact on IDP.
5.4.2. Pile End Resistance under Ultimate Bearing Capacity
From the static load test, all the pile side resistances and pile end resistances of these test piles in the ultimate bearing capacity state are obtained, respectively. As illustrated in Table 4, when every test pile reaches the ultimate bearing capacity, the ratios of pile side resistance to pile end resistance are not the same. MDP has the largest ratio of pile side resistance in total resistance, followed by RDP and IDP, while the ratio of pile end resistance is on the contrary. Although the bearing characteristics of these 3 test piles are mainly depending on the pile side resistance, the degree of exertion of pile side resistance and pile end resistance in the 3 test piles is not the same.

5.4.3. The Change Law of Pile End Resistance with Pile Settlement
Due to the very small compression deformation of the test piles, the settlement of pile top is used as the settlement of piles in this paper. From Figure 17, it is noted that when the settlements of the 3 test piles are the same, pile end resistance of IDP is the largest, followed by RDP and MDP. With the increase of the pile settlements, the pile end resistances of 3 test piles increase continuously. And among them, pile end resistance of IDP increases the most, but pile end resistances of the 3 test piles do not tend to a definite value. It shows that pile end resistance does not reach the limit value during the process of applying the load at the pile top. When the settlements of piles are less than 5 mm, the differences in pile end resistances of the 3 test piles are small. However, when the pile settlements are larger than 10 mm, especially larger than 15 mm, pile end resistance of IDP is significantly larger than that of RDP and MDP when the pile settlements are the same.
5.5. The Relationship between Pile End Resistance and Pile Side Resistance
For 3 test piles under different loads, pile side resistances and pile end resistances are all shown in Figure 18, and the ratios of every single resistance to the total resistance are shown in Figure 19. From Figure 18, it is noted that when the loads are applied at the top of every test pile, the line graphs of pile side resistance and pile end resistance both show an ascending trend. And the continuous increase of the pile side resistance does not tend to a definite value, which suggests that pile side resistance does not reach the limit value after the first loading. In Section 5.1, the ultimate bearing capacity of MDP is 11000 kN, followed by RDP (9000 kN) and IDP (8000 kN), indicating that the pile side resistances of all test piles are not at the maximum state when the ultimate bearing capacity is reached.
From Figure 19, (1) pile side resistance ratio of MDP is the largest, while the ratio of pile end resistance is the smallest. (2) Pile side resistance ratio of IDP is the smallest, while the ratio of pile end resistance is the largest. But the variations of the 3 test piles are basically the same. At the later loading, pile side resistance ratios of these piles all show a decreasing trend, and the ratios of pile end resistance show an increasing trend, but the change trend is not obvious. The results suggest that the 3 test piles in this filed test are all friction piles, and pile side resistances and pile end resistances are not in the limit state at the last loading. During the early loading on the pile top, especially during the first loading and the second loading, the ratios of pile side resistances of the 3 test piles decrease, but the ratios of pile end resistances increase. The result indicates the complexity of the mechanical properties of the soil and the development of pile side resistance requires a process. Therefore, when designing castinplace piles in loess areas, it is necessary to consider the development degree of pile side resistance and pile end resistance and then use the different partial coefficients in pile side resistance and pile end resistance [58–63].
6. Conclusions
Through the fullscale field study, bearing characteristics of the 3 types of castinplace piles (MDP, RDP, and IDP) under different loads in loess area are studied in this paper. Based on the analysis of test results, the following conclusions can be drawn:(1)Under the similar conditions, the ultimate bearing capacity of MDP is the largest (11000 kN), followed by RDP (9000 kN) and IDP (8000 kN). All actual bearing capacities are larger than the estimated value (7797.9 kN), which indicates that the pile bearing capacity estimated by the standard is conservative. The final settlement values of MDP, RDP, and IDP are 63.58 mm, 63.72 mm, and 55.51 mm; after unloading, the pile body rebound displacement of MDP is the largest (13.91 mm), followed by RDP (9.15 mm) and IDP (8.14 mm).(2)The attenuation rates of axial force for piles (MDP, RDP, and IDP) are basically the same under the action of all levels of loading, all decreasing firstly and increasing finally. Among them, the rate of MDP is the largest (average is 24.2%), followed by RDP (average is 19.72%) and IDP (average is 16.69%).(3)The bearing capacity of all 3 test piles is mainly dependent on pile side resistances in loess area. Pile side resistance is not evenly distributed along the pile body, which is related to properties of soil around piles and pilesoil interactions. Under the same loads, pile side resistance of MDP is the largest, followed by RDP and IDP, while pile end resistances of the 3 test piles are opposite.(4)Holeforming methods mainly influence the roughness of hole wall in loess area, which determines the value of pile side resistance. Compared with the impact drilling method, the other 2 methods (manual digging method and rotary drilling), especially manual digging method, have less disturbance to soil around the pile, resulting in rough hole wall and enhancing the pilesoil interactions.(5)Different partial coefficients should be adopted rationally for pile side resistance and pile end resistance when designing castinplace piles in the loess area because pile side resistance and pile end resistance are not taking effect at the same time.
Data Availability
Data supporting this research article are available from the corresponding author on request.
Conflicts of Interest
The authors declare that they have no conflicts of interest.
Acknowledgments
The authors gratefully acknowledge the financial support by the National Key R&D problem of China (no. 2018YFC0808606) and the Project on Social Development of Shaanxi Provincial Science nos. 2018SF378 and 2018SF382. The authors also sincerely thank Rodney Sheldon Garnes who is a native speaker graduated from the University of the West Indies for his help in the language modification of this paper.
References
 G. Du, A. Wang, L. Li et al., “Calculation approach for lateral bearing capacity of single precast concrete piles with improved soil surrounds,” Advances in Civil Engineering, vol. 2018, Article ID 5127927, 12 pages, 2018. View at: Publisher Site  Google Scholar
 X. Nie, X. Wei, X. Li et al., “Heat treatment and ventilation optimization in a deep mine,” Advances in Civil Engineering, vol. 2018, Article ID 1529490, 12 pages, 2018. View at: Publisher Site  Google Scholar
 Z. Zhou, C. Ren, G. Xu, H. Zhan, and T. Liu, “Dynamic failure mode and dynamic response of high slope using shaking table test,” Shock and Vibration, vol. 2019, Article ID 4802740, 19 pages, 2019. View at: Publisher Site  Google Scholar
 B. Lehane and F. Guo, “Lateral response of piles in cemented sand,” Géotechnique, vol. 67, no. 7, pp. 1–11, 2017. View at: Publisher Site  Google Scholar
 M. T. Suleiman, T. Vande Voort, and S. Sritharan, “Behavior of driven ultrahighperformance concrete Hpiles subjected to vertical and lateral loadings,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 136, no. 10, pp. 1403–1413, 2010. View at: Publisher Site  Google Scholar
 M. Hamed and H. Canakci, “Experimental study on axial response of different pile materials in organic soil,” Geomechanics and Engineering, vol. 12, no. 6, pp. 899–917, 2017. View at: Google Scholar
 X. Luo, L. Niu, and S. Zhang, “An algorithm for traffic flow prediction based on improved SARIMA and GA,” KSCE Journal of Civil Engineering, vol. 22, no. 10, pp. 4107–4115, 2018. View at: Publisher Site  Google Scholar
 Q. Yan, H. Chen, W. Chen et al., “Dynamic characteristic and fatigue accumulative damage of a cross shield tunnel structure under vibration load,” Shock and Vibration, vol. 2018, Article ID 9525680, 14 pages, 2018. View at: Publisher Site  Google Scholar
 X. Weng, Y. Zhao, Y. Lou et al., “Application of fiber bragg grating strain sensors to a centrifuge model of a jacked pile in collapsible loess,” Geotechnical Testing Journal, vol. 39, no. 3, Article ID 20150076, 2016. View at: Publisher Site  Google Scholar
 Z. J. Zhou, S. S. Zhu, X. Kong, J. T. Lei, and T. Liu, “Optimization analysis of settlement parameters for postgrouting piles in loess area of Shaanxi, China,” Advances in Civil Engineering, vol. 2019, Article ID 7085104, 11 pages, 2019. View at: Publisher Site  Google Scholar
 Z. Zhang, H. Zhang, Y. Tan, and H. Yang, “Natural wind utilization in the vertical shaft of a superlong highway tunnel and its energy saving effect,” Building and Environment, vol. 145, pp. 140–152, 2018. View at: Publisher Site  Google Scholar
 X. Cheng and W. Jing, “Calculation models and stability of composite foundation treated with compaction piles,” Geomechanics and Engineering, vol. 13, no. 6, pp. 929–946, 2017. View at: Google Scholar
 Y. Fang, Z. Yao, G. Walton, and Y. Fu, “Liner behavior of a tunnel constructed below a caved zone,” KSCE Journal of Civil Engineering, vol. 22, no. 10, pp. 4163–4172, 2018. View at: Publisher Site  Google Scholar
 P. Li, F. Wang, and Q. Fang, “Undrained analysis of ground reaction curves for deep tunnels in saturated ground considering the effect of ground reinforcement,” Tunnelling and Underground Space Technology, vol. 71, pp. 579–590, 2018. View at: Publisher Site  Google Scholar
 J. Lai, X. Wang, J. Qiu et al., “A stateoftheart review of sustainable energy based freeze proof technology for coldregion tunnels in China,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 3554–3569, 2018. View at: Publisher Site  Google Scholar
 J. Lai, S. He, J. Qiu et al., “Characteristics of seismic disasters and aseismic measures of tunnels in Wenchuan earthquake,” Environmental Earth Sciences, vol. 76, no. 2, p. 94, 2017. View at: Publisher Site  Google Scholar
 X. Wu, H. Chu, and L. Wang, “Comparative research on lower bound depth of collapse loess,” Proceedings of the Institution of Civil EngineersGeotechnical Engineering, vol. 169, no. 1, pp. 67–72, 2016. View at: Publisher Site  Google Scholar
 N. L. Zotsenko and Y. L. Vinnikov, “Longterm settlement of buildings erected on driven castinsitu piles in loess soil,” Soil Mechanics and Foundation Engineering, vol. 53, no. 3, pp. 189–195, 2016. View at: Publisher Site  Google Scholar
 J. Wang, Z. Song, B. Zhao, X. Liu, J. Liu, and J. Lai, “A study on the mechanical behavior and statistical damage constitutive model of sandstone,” Arabian Journal for Science and Engineering, vol. 43, no. 10, pp. 5179–5192, 2018. View at: Publisher Site  Google Scholar
 Z.Z. Qian, X.L. Lu, W.Z. Yang, and Q. Cui, “Behaviour of micropiles in collapsible loess under tension or compression load,” Geomechanics and Engineering, vol. 7, no. 5, pp. 477–493, 2014. View at: Publisher Site  Google Scholar
 Y. Li, S. Xu, H. Liu et al., “Displacement and stress characteristics of tunnel foundation in collapsible loess ground reinforced by jet grouting columns,” Advances in Civil Engineering, vol. 2018, Article ID 2352174, 16 pages, 2018. View at: Publisher Site  Google Scholar
 S.J. Feng, Z.M. Shi, Y. Shen, and L.C. Li, “Elimination of loess collapsibility with application to construction and demolition waste during dynamic compaction,” Environmental Earth Sciences, vol. 73, no. 9, pp. 5317–5332, 2015. View at: Publisher Site  Google Scholar
 J. Rücknagel, G. Dumbeck, T. Harrach, E. Höhne, and O. Christen, “Visual structure assessment and mechanical soil properties of recultivated soils made up of loess,” Soil Use and Management, vol. 29, no. 2, pp. 271–278, 2013. View at: Publisher Site  Google Scholar
 J. Lai, S. Mao, J. Qiu et al., “Investigation progresses and applications of fractional derivative model in geotechnical engineering,” Mathematical Problems in Engineering, vol. 2016, Article ID 9183296, 15 pages, 2016. View at: Publisher Site  Google Scholar
 J. Lai, K. Wang, J. Qiu et al., “Vibration response characteristics of the cross tunnel structure,” Shock and Vibration, vol. 2016, Article ID 9524206, 16 pages, 2016. View at: Publisher Site  Google Scholar
 S. Park, D. Lee, H.J. Choi, K. Jung, and H. Choi, “Relative constructability and thermal performance of castinplace concrete energy pile: coiltype GHEX (ground heat exchanger),” Energy, vol. 81, pp. 56–66, 2015. View at: Publisher Site  Google Scholar
 H. Xing, Z. Zhang, H. Liu, and H. Wei, “Largescale tests of pilesupported earth platform with and without geogrid,” Geotextiles and Geomembranes, vol. 42, no. 6, pp. 586–598, 2014. View at: Publisher Site  Google Scholar
 A. W. Stuedlein, W. J. Neely, and T. M. Gurtowski, “Reliabilitybased design of augered castinplace piles in granular soils,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 138, no. 6, pp. 709–717, 2012. View at: Publisher Site  Google Scholar
 C. Akgüner and M. Kirkit, “Axial bearing capacity of socketed single castinplace piles,” Soils and Foundations, vol. 52, no. 1, pp. 59–68, 2012. View at: Publisher Site  Google Scholar
 J. Lai, J. Qiu, H. Fan et al., “Fiber bragg grating sensorsbased insitu monitoring and safety assessment of loess tunnel,” Journal of Sensors, vol. 2016, Article ID 8658290, 10 pages, 2016. View at: Publisher Site  Google Scholar
 J. Lai, H. Liu, J. Qiu et al., “Settlement analysis of saturated tailings dam treated by CFG pile composite foundation,” Advances in Materials Science and Engineering, vol. 2016, Article ID 7383762, 10 pages, 2016. View at: Publisher Site  Google Scholar
 Z. Wang, Y. Xie, J. Qiu et al., “Field experiment on soaking characteristics of collapsible loess,” Advances in Materials Science and Engineering, vol. 2017, Article ID 6213871, 17 pages, 2017. View at: Google Scholar
 M. Sakr, “Comparison between high strain dynamicField experiment on soaking characteristics of collapsible loess and static load tests of helical piles in cohesive soils,” Soil Dynamics and Earthquake Engineering, vol. 54, pp. 20–30, 2013. View at: Publisher Site  Google Scholar
 M. Y. AbuFarsakh, M. N. Haque, and C. Tsai, “A fullscale field study for performance evaluation of axially loaded largediameter cylinder piles with pipe piles and PSC piles,” Acta Geotechnica, vol. 12, no. 4, pp. 753–772, 2017. View at: Publisher Site  Google Scholar
 J. Qiu, H. Liu, J. Lai et al., “Investigating the longterm settlement of a tunnel built over improved loessial foundation soil using jet grouting technique,” Journal of Performance of Constructed Facilities, vol. 32, no. 5, Article ID 04018066, 2018. View at: Publisher Site  Google Scholar
 J. Qiu, X. Wang, S. He, H. Liu, J. Lai, and L. Wang, “The catastrophic landside in Maoxian county, Sichuan, SW China, on June 24, 2017,” Natural Hazards, vol. 89, no. 3, pp. 1485–1493, 2017. View at: Publisher Site  Google Scholar
 X. Z. Li, X. L. Qu, C. Z. Qi, and Z. S. Shao, “A unified analytical method calculating brittle rocks deformation induced by crack growth,” International Journal of Rock Mechanics and Mining Sciences, vol. 113, pp. 134–141, 2019. View at: Publisher Site  Google Scholar
 Y. Shang, F. Niu, X. Wu, and M. Liu, “A novel refrigerant system to reduce refreezing time of castinplace pile foundation in permafrost regions,” Applied Thermal Engineering, vol. 128, pp. 1151–1158, 2018. View at: Publisher Site  Google Scholar
 S. Park, S. Lee, K. Oh, D. Kim, and H. Choi, “Engineering chart for thermal performance of castinplace energy pile considering thermal resistance,” Applied Thermal Engineering, vol. 130, pp. 899–921, 2018. View at: Publisher Site  Google Scholar
 J. Lai, H. Liu, J. Qiu et al., “Stress analysis of CFG pile composite foundation in consolidating saturated mine tailings dam,” Advances in Materials Science and Engineering, vol. 2016, Article ID 3948754, 12 pages, 2016. View at: Google Scholar
 F. M. Abdrabbo and N. A. Ali, “Behaviour of single pile in consolidating soil,” Alexandria Engineering Journal, vol. 54, no. 3, pp. 481–495, 2015. View at: Publisher Site  Google Scholar
 X. Li and L. Li, “Quantification of the pore structures of Malan loess and the effects on loess permeability and environmental significance, Shaanxi Province, China: an experimental study,” Environmental Earth Sciences, vol. 76, no. 15, 2017. View at: Publisher Site  Google Scholar
 Z. Hu, K. Du, J. Lai et al., “Statistical analysis of influence of cover depth on loess tunnel deformation in NW China,” Advances in Civil Engineering, vol. 2019, Article ID 2706976, 12 pages, 2019. View at: Publisher Site  Google Scholar
 T. Sprafke and I. Obreht, “Loess: rock, sediment or soilwhat is missing for its definition?” Quaternary International, vol. 399, pp. 198–207, 2016. View at: Publisher Site  Google Scholar
 Z. Liu, F. Liu, F. Ma et al., “Collapsibility, composition, and microstructure of loess in China,” Canadian Geotechnical Journal, vol. 53, no. 4, pp. 673–686, 2016. View at: Publisher Site  Google Scholar
 F. Zhang, R. Kong, and J. Peng, “Effects of heating on compositional, structural, and physicochemical properties of loess under laboratory conditions,” Applied Clay Science, vol. 152, pp. 259–266, 2018. View at: Publisher Site  Google Scholar
 Y. Zhang, Y. Wang, N. Zhao et al., “Experimental and stressstrain equation investigation on compressive strength of raw and modified soil in loess plateau,” Advances in Materials Science and Engineering, vol. 2016, Article ID 2681038, 10 pages, 2016. View at: Publisher Site  Google Scholar
 Profession Standard of The People’s Republic of China, Technical Code for Building Pile Foundations (JGJ942008), China Architecture and Building Press, Beijing, China, 2008.
 Profession Standard of The People’s Republic of China, Technical code for testing of building foundation piles (JGJ1062014), China Architecture and Building Press, Beijing, China, 2014.
 L. Gao, K. Yang, X. Chen, and X. Yu, “Study on the deformation measurement of the castinplace largediameter pile using fiber bragg grating sensors,” Sensors, vol. 17, no. 3, p. 505, 2017. View at: Publisher Site  Google Scholar
 J. Qiu, Y. Qin, J. Lai et al., “Structural response of the metro tunnel under local dynamic water environment in loess strata,” Geofluids, vol. 2019, Article ID 8541959, 16 pages, 2019. View at: Google Scholar
 H. Zhou, H. Liu, M. Randolph et al., “Experimental and analytical study of Xsection castinplace concrete pile installation effect,” International Journal of Physical Modelling in Geotechnics, vol. 17, no. 2, pp. 1–19, 2017. View at: Publisher Site  Google Scholar
 Z. Wang, S. Shen, W. Cheng et al., “Simple method to predict ground displacements caused by installing horizontal jetgrouting columns,” Mathematical Problems in Engineering, vol. 2018, Article ID 1897394, 11 pages, 2018. View at: Publisher Site  Google Scholar
 S. Thiyyakkandi, M. Mcvay, P. Lai, and R. Herrera, “Suitability of jetted and grouted precast pile for supporting mast arm structures,” Canadian Geotechnical Journal, vol. 54, no. 9, pp. 1231–1244, 2017. View at: Publisher Site  Google Scholar
 C.W. Lee, Y.S. Kim, and S.Y. Park, “Development of prebored screw pile method and evaluation of its bearing characteristics,” Marine Georesources and Geotechnology, vol. 34, no. 1, pp. 42–56, 2016. View at: Publisher Site  Google Scholar
 S. Suryasentana and B. Lehane, “Numerical derivation of CPTbased p–y curves for piles in sand,” Geotechnique, vol. 64, no. 3, pp. 186–194, 2015. View at: Publisher Site  Google Scholar
 Q. Yan, Y. Xu, W. Zhang, P. Geng, and W. Yang, “Numerical analysis of the cracking and failure behaviors of segmental lining structure of an underwater shield tunnel subjected to a derailed highspeed train impact,” Tunnelling and Underground Space Technology, vol. 72, pp. 41–54, 2018. View at: Publisher Site  Google Scholar
 X. L. Luo, D. Y. Li, Y. Yang, and S. R. Zhang, “Spatiotemporal traffic flow prediction with KNN and LSTM,” Journal of Advanced Transportation, vol. 2019, Article ID 4145353, 10 pages, 2019. View at: Publisher Site  Google Scholar
 Z. Wang, Z. Hu, J. Lai et al., “Settlement characteristics of jacked box tunneling underneath a highway embankment,” Journal of Performance of Constructed Facilities, vol. 33, no. 2, Article ID 04019005, 2019. View at: Publisher Site  Google Scholar
 J. Qiu, X. Wang, J. Lai, Q. Zhang, and J. Wang, “Response characteristics and preventions for seismic subsidence of loess in Northwest China,” Natural Hazards, vol. 92, no. 3, pp. 1909–1935, 2018. View at: Publisher Site  Google Scholar
 L. Wang, J. Sun, X. Huang et al., “A field testing study on negative skin friction along piles induced by seismic subsidence of loess,” Soil Dynamics and Earthquake Engineering, vol. 31, no. 1, pp. 45–58, 2011. View at: Publisher Site  Google Scholar
 Y. W. Zhang, Z. P. Song, X. L. Weng, and Y. L. Xie, “A new soilwater characteristic curve model for unsaturated loess based on wettinginduced pore deformation,” Geofluids, vol. 2019, Article ID 5261985, 13 pages, 2019. View at: Publisher Site  Google Scholar
 Y. W. Zhang, X. L. Weng, Z. P. Song, and Y. F. Sun, “Modeling of loess soaking induced impacts on metro tunnel using water soaking system in centrifuge,” Geofluids, vol. 2019, Article ID 5487952, 13 pages, 2019. View at: Publisher Site  Google Scholar
Copyright
Copyright © 2019 Zhijun Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.