Advances in Materials Science and Engineering

Volume 2009, Article ID 579123, 11 pages

http://dx.doi.org/10.1155/2009/579123

Research Article

## Self-Assembly of Cluster-Based Nanoscopic Supramolecules into One-Dimensional Coordination Polymers

Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA

Received 15 April 2009; Revised 9 July 2009; Accepted 10 July 2009

Academic Editor: Sridhar Komarneni

Copyright © 2009 Jian-Jun Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Linked References

- A. K. Cheetham, G. Férey, and T. Loiseau, “Open-framework inorganic materials,”
*Angewandte Chemie International Edition*, vol. 38, no. 22, pp. 3269–3292, 1999. View at Google Scholar - A. K. Cheetham, C. N. R. Rao, and R. K. Feller, “Structural diversity and chemical trends in hybrid inorganic-organic framework materials,”
*Chemical Communications*, no. 46, pp. 4780–4795, 2006. View at Publisher · View at Google Scholar - B. Kesanli and W. Lin, “Chiral porous coordination networks: rational design and applications in enantioselective processes,”
*Coordination Chemistry Reviews*, vol. 246, no. 1-2, pp. 305–326, 2003. View at Publisher · View at Google Scholar - N. L. Rosi, M. Eddaoudi, J. Kim, M. O'Keeffe, and O. M. Yaghi, “Advances in the chemistry of metal-organic frameworks,”
*CrystEngComm*, vol. 4, pp. 401–404, 2002. View at Publisher · View at Google Scholar - S. L. James, “Metal-organic frameworks,”
*Chemical Society Reviews*, vol. 32, no. 5, pp. 276–288, 2003. View at Google Scholar - M. O'Keeffe, M. Eddaoudi, H. Li, T. Reineke, and O. M. Yaghi, “Frameworks for extended solids: geometrical design principles,”
*Journal of Solid State Chemistry*, vol. 152, no. 1, pp. 3–20, 2000. View at Publisher · View at Google Scholar - O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim, “Reticular synthesis and the design of new materials,”
*Nature*, vol. 423, no. 6941, pp. 705–714, 2003. View at Publisher · View at Google Scholar - H. K. Chae, D. Y. Siberio-Perez, J. Kim et al., “A route to high surface area, porosity and inclusion of large molecules in crystals,”
*Nature*, vol. 427, no. 6974, pp. 523–527, 2004. View at Publisher · View at Google Scholar - B. Moulton and M. J. Zaworotko, “From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids,”
*Chemical Reviews*, vol. 101, no. 6, pp. 1629–1658, 2001. View at Publisher · View at Google Scholar - M. Eddaoudi, D. B. Moler, H. Li et al., “Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks,”
*Accounts of Chemical Research*, vol. 34, no. 4, pp. 319–330, 2001. View at Publisher · View at Google Scholar - J. L. C. Rowsell, J. Eckert, and O. M. Yaghi, “Characterization of ${\text{H}}_{2}$ binding sites in prototypical metal-organic frameworks by inelastic neutron scattering,”
*Journal of the American Chemical Society*, vol. 127, no. 42, pp. 14904–14910, 2005. View at Publisher · View at Google Scholar - S. Ma, D. Sun, X.-S. Wang, and H.-C. Zhou, “A mesh-adjustable molecular sieve for general use in gas separation,”
*Angewandte Chemie International Edition*, vol. 46, no. 14, pp. 2458–2462, 2007. View at Publisher · View at Google Scholar - B. Kesanli, Y. Cui, M. R. Smith, E. W. Bittner, B. C. Bockrath, and W. Lin, “Highly interpenetrated metal-organic frameworks for hydrogen storage,”
*Angewandte Chemie International Edition*, vol. 44, no. 1, pp. 72–75, 2004. View at Publisher · View at Google Scholar - J. Y. Lee, L. Pan, S. P. Kelly, J. Jagiello, T. J. Emge, and J. Li, “Achieving high density of adsorbed hydrogen in microporous metal organic frameworks,”
*Advanced Materials*, vol. 17, no. 22, pp. 2703–2706, 2005. View at Publisher · View at Google Scholar - S. Kitagawa, “Physical chemistry: gas in a straitjacket,”
*Nature*, vol. 441, no. 7093, pp. 584–585, 2006. View at Publisher · View at Google Scholar - Y. Kubota, M. Takata, R. Matsuda et al., “Direct observation of hydrogen molecules adsorbed onto a microporous coordination polymer,”
*Angewandte Chemie International Edition*, vol. 44, no. 6, pp. 920–923, 2005. View at Publisher · View at Google Scholar - C.-D. Wu, A. Hu, L. Zhang, and W. Lin, “A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis,”
*Journal of the American Chemical Society*, vol. 127, no. 25, pp. 8940–8941, 2005. View at Publisher · View at Google Scholar - L. Pan, D. H. Olson, L. R. Ciemnolonski, R. Heady, and J. Li, “Separation of hydrocarbons with a microporous metal-organic framework,”
*Angewandte Chemie International Edition*, vol. 45, no. 4, pp. 616–619, 2006. View at Publisher · View at Google Scholar - X.-Y. Wang, Z.-M. Wang, and S. Gao, “A pillared layer MOF with anion-tunable magnetic properties and photochemical [$2+2$] cycloaddition,”
*Chemical Communications*, no. 11, pp. 1127–1129, 2007. View at Publisher · View at Google Scholar - S. Xiang, X. Wu, J. Zhang et al., “A 3D canted antiferromagnetic porous metal-organic framework with anatase topology through assembly of an analogue of polyoxometalate,”
*Journal of the American Chemical Society*, vol. 127, no. 47, pp. 16352–16353, 2005. View at Publisher · View at Google Scholar - H.-Z. Kou, B. C. Zhou, S. Gao, and R.-J. Wang, “A 2D cyano- and oxamidato-bridged heterotrimetallic CrIII-CuII-GDIII complex,”
*Angewandte Chemie International Edition*, vol. 42, no. 28, pp. 3288–3291, 2003. View at Publisher · View at Google Scholar - O. Maury and H. Le Bozec, “Molecular engineering of octupolar NLO molecules and materials based on bipyridyl metal complexes,”
*Accounts of Chemical Research*, vol. 38, no. 9, pp. 691–704, 2005. View at Publisher · View at Google Scholar - O. R. Evans and W. Lin, “Crystal engineering of NLO materials based on metal-organic coordination networks,”
*Accounts of Chemical Research*, vol. 35, no. 7, pp. 511–522, 2002. View at Publisher · View at Google Scholar - J.-J. Zhang, T.-L. Sheng, S.-M. Hu et al., “Two 3D supramolecular polymers constructed from an amino acid and a high-nuclear ${\text{Ln}}_{6}{\text{Cu}}_{24}$ cluster node,”
*Chemistry*, vol. 10, no. 16, pp. 3963–3969, 2004. View at Publisher · View at Google Scholar - A. Kuc, A. Enyashin, and G. Seifert, “Metal-organic frameworks: structural, energetic, electronic, and mechanical properties,”
*Journal of Physical Chemistry B*, vol. 111, no. 28, pp. 8179–8186, 2007. View at Publisher · View at Google Scholar - F. A. Cotton, C. Lin, and C. A. Murillo, “Supramolecular arrays based on dimetal building units,”
*Accounts of Chemical Research*, vol. 34, no. 10, pp. 759–771, 2001. View at Publisher · View at Google Scholar - M. Eddaoudi, D. B. Moler, H. Li et al., “Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks,”
*Accounts of Chemical Research*, vol. 34, no. 4, pp. 319–330, 2001. View at Publisher · View at Google Scholar - B.-Q. Ma, D.-S. Zhang, S. Gao, T.-Z. Jin, C.-H. Yan, and G.-X. Xu, “From cubane to supercubane: the design, synthesis, and structure of a three-dimensional open framework based on a ${\text{Ln}}_{4}{\text{O}}_{4}$ cluster,”
*Angewandte Chemie International Edition*, vol. 39, no. 20, pp. 3644–3646, 2000. View at Publisher · View at Google Scholar - L. Song, J. Li, P. Lin et al., “Synthesis and crystal structures of multidimensional coordination polymers based on W/Cu/S clusters with flexible imidazole ligands,”
*Inorganic Chemistry*, vol. 45, no. 25, pp. 10155–10161, 2006. View at Publisher · View at Google Scholar - E. J. Welch and J. R. Long, “Atomlike building units of adjustable character: solid-state and solution routes to manipulating hexanuclear transition metal chalcohalide clusters,”
*Progress in Inorganic Chemistry*, vol. 54, pp. 1–45, 2005. View at Google Scholar - J.-C. P. Gabriel, K. Boubekeur, S. Uriel, and P. Batail, “Chemistry of hexanuclear rhenium chalcohalide clusters,”
*Chemical Reviews*, vol. 101, no. 7, pp. 2037–2066, 2001. View at Publisher · View at Google Scholar - H. D. Selby, B. K. Roland, and Z. Zheng, “Ligand-bridged oligomeric and supramolecular arrays of the
hexanuclear rhenium selenide clusters—exploratory synthesis,
structural characterization, and property investigation,”
*Accounts of Chemical Research*, vol. 36, no. 12, pp. 933–944, 2003. View at Publisher · View at Google Scholar - T. G. Gray, “Hexanuclear and higher nuclearity clusters of the Groups 4–7 metals with stabilizing $\Pi $-donor ligands,”
*Coordination Chemistry Reviews*, vol. 243, no. 1-2, pp. 213–235, 2003. View at Publisher · View at Google Scholar - R. Chevrel, M. Sergent, and J. Prigent, “Sur de nouvelles phases sulfurées ternaires du molybdène,”
*Journal of Solid State Chemistry*, vol. 3, no. 4, pp. 515–519, 1971. View at Google Scholar - O. Fischer and M. B. Maple, Eds.,
*Superconductivity in Ternary Compounds*, vol. 32 of*Top. Curr. Phys.*, Springer, Berlin, Germany, 1982. - C. Fischer, N. Alonso-Vante, S. Fiechter, and H. Tributsch, “Electrocatalytic properties of mixed transition metal tellurides (Chevrel-phases) for oxygen reduction,”
*Journal of Applied Electrochemistry*, vol. 25, no. 11, pp. 1004–1008, 1995. View at Publisher · View at Google Scholar - K. Suzuki, T. Iijima, and M. Wakihara, “Chromium Chevrel phase sulfide (CrxMo6S8-y) as the cathode with long cycle life in lithium rechargeable batteries,”
*Solid State Ionics*, vol. 109, no. 3-4, pp. 311–320, 1998. View at Google Scholar - R. Kanno, Y. Takeda, M. Ohya, and O. Yamamoto, “Rechargeable all solid-state cell with high copper ion conductor and copper chevrel phase,”
*Materials Research Bulletin*, vol. 22, no. 9, pp. 1283–1290, 1987. View at Google Scholar - E. G. Tulsky, N. R. M. Crawford, S. A. Baudron, P. Batail, and J. R. Long, “Cluster-to-metal magnetic coupling: synthesis and characterization of 25-electron ${[{\text{Re}}_{6-n}{\text{Os}}_{n}{\text{Se}}_{8}{(\text{CN})}_{6}]}^{(5-n)-}(n=1,2)$ clusters and ${\{{\text{Re}}_{6-n}{\text{Os}}_{n}{\text{Se}}_{8}{[\text{CNCu}({\text{Me}}_{\text{6}}\text{tren})]}_{6}\}}^{9+}(n=0,1,2)$ assemblies,”
*Journal of the American Chemical Society*, vol. 125, no. 50, pp. 15543–15553, 2003. View at Publisher · View at Google Scholar - D. H. Johnston, C. L. Stern, and D. F. Shriver, “Synthesis of 12-metal clusters based on the ${[{\text{Mo}}_{6}{\text{Cl}}_{8}]}^{4+}$ core. X-ray structure of ${(\text{PPN})}_{2}{\text{Mo}}_{6}{\text{Cl}}_{8}^{\text{i}}{\{(\mu \text{-NC})\text{Mn}{(\text{CO})}_{2}\text{Cp}\}}_{6}^{\text{a}}$,”
*Inorganic Chemistry*, vol. 32, no. 23, pp. 5170–5175, 1993. View at Publisher · View at Google Scholar - N. Prokopuk and D. F. Shriver, “A one-dimensional array of clusters: ${\text{Na}}_{2}{\text{Mo}}_{6}{\text{Cl}}_{8}{({\text{O}}_{2}{\text{CC}}_{5}{\text{H}}_{4}\text{FeCp})}_{6}\xb7{\text{CH}}_{3}\text{OH}$,”
*Inorganic Chemistry*, vol. 36, no. 24, pp. 5609–5613, 1997. View at Publisher · View at Google Scholar - Y. V. Mironov, V. E. Federov, I. Ijjaali, and J. A. Ibers, “$[{\{(\text{Cu}{(\text{en})}_{2}\})}_{2}{\text{RE}}_{4}{\text{TE}}_{4}{(\text{CN})}_{12}]\cdot 5{\text{H}}_{2}\text{O}$ and ${\text{[{(Cu(en)}}_{2}{\text{})}}_{2}{\text{Re}}_{6}{\text{Te}}_{8}{\text{(CN)}}_{6}\text{]}\cdot 5{\text{H}}_{2}\text{O}$: bonding of a transition-metal complex to a rhenium chalcocyanide cluster,”
*Inorganic Chemistry*, vol. 40, no. 24, pp. 6320–6323, 2001. View at Publisher · View at Google Scholar - A. Itasaka, M. Abe, T. Yoshimura et al., “Octahedral arrangement of porphyrin moieties around hexarhenium(III) cluster cores: structure of ($\mu $3-Selenido)hexa-(5-(4-pyridyl)-10,15,20-tritolylporphyrin)-hexarhenium(III) (2+),”
*Angewandte Chemie International Edition*, vol. 41, no. 3, pp. 463–466, 2002. View at Publisher · View at Google Scholar - S. Jin and F. J. DiSalvo, “3-D coordination network structures constructed from ${[{\text{W}}_{6}{\text{S}}_{8}{(\text{CN})}_{6}]}^{6-}$ anions,”
*Chemistry of Materials*, vol. 14, no. 8, pp. 3448–3457, 2002. View at Publisher · View at Google Scholar - M. V. Bennett, M. P. Shores, L. G. Beauvais, and J. R. Long, “Expansion of the porous solid ${\text{Na}}_{2}{\text{Zn}}_{3}{[\text{Fe}{(\text{CN})}_{6}]}_{2}\xb79{\text{H}}_{2}\text{O}$: enhanced ion-exchange capacity in ${\text{Na}}_{2}{\text{Zn}}_{3}{[{\text{Re}\hspace{0.17em}}_{6}{\text{Se}}_{8}{(\text{CN})}_{6}]}_{2}\cdot 24{\text{H}}_{2}\text{O}$,”
*Journal of the American Chemical Society*, vol. 122, no. 28, pp. 6664–6668, 2000. View at Publisher · View at Google Scholar - M. S. Tarasenko, N. G. Naumov, A. V. Virovets et al., “New coordination polymers based on paramagnetic cluster anions ${[{\text{Re}}_{6}{\text{Se}}_{8}{(\text{CN})}_{6}]}^{3-}$ and rare earth cations: the synthesis and structure of ${\text{[{Ln(H}}_{2}{\text{O)}}_{3}{\text{)}{Re}}_{6}{\text{Se}}_{8}{\text{(CN)}}_{6}\text{}]}\xb7\text{3}{\text{.5H}}_{2}\text{O}$,”
*Journal of Structural Chemistry*, vol. 46, supplement 1, pp. S137–S144, 2005. View at Publisher · View at Google Scholar - S. B. Artemkina, N. G. Naumov, A. V. Virovets, S. A. Gromilov, D. Fenske, and V. E. Fedorov, “New polymeric structure of rhenium octahedral chalcocyanide complex: ${\text{Ln}}^{3+}$-derived network with one-dimensional channels,”
*Inorganic Chemistry Communications*, vol. 4, no. 8, pp. 423–426, 2001. View at Publisher · View at Google Scholar - M. S. Tarasenko, A. Yu. Ledneva, N. G. Naumov, D. Y. Naumov, and V. E. Fedorov, “Novel low dimensional cluster compounds: syntheses and crystal structures,”
*Journal of Cluster Science*, vol. 16, no. 3, pp. 353–365, 2005. View at Publisher · View at Google Scholar - Y. Kim, S.-M. Park, W. Nam, and S.-J. Kim, “Crystal structure of the two-dimensional framework ${[\text{Mn}(salen)]}_{4n}{[{\text{Re}}_{6}{\text{Te}}_{\text{8}}{(\text{CN})}_{6}]}_{n}$ [$salen=N,{N}^{\prime}$-ethylenebis(salicylideneaminato)],”
*Chemical Communications*, no. 16, pp. 1470–1471, 2001. View at Google Scholar - K. A. Brylev, Yu. V. Mironov, N. G. Naumov, V. E. Fedorov, and J. A. Ibers, “New compounds from tellurocyanide rhenium cluster anions and 3d-transition metal cations coordinated with ethylenediamine,”
*Inorganic Chemistry*, vol. 43, no. 16, pp. 4833–4838, 2004. View at Publisher · View at Google Scholar - N. G. Naumov, D. V. Soldatov, J. A. Ripmeester, S. B. Artemkina, and V. E. Federov, “Extended framework materials incorporating cyanide cluster complexes: structure of the first 3D architecture accommodating organic molecules,”
*Chemical Communications*, pp. 571–572, 2001. View at Publisher · View at Google Scholar - L. G. Beauvais, M. P. Shores, and J. R. Long, “Cyano-bridged ${\text{Re}}_{6}{\text{Q}}_{8}(\text{Q}=\text{S},\text{Se})$ cluster-cobalt(II) framework materials: versatile solid chemical sensors,”
*Journal of the American Chemical Society*, vol. 122, no. 12, pp. 2763–2772, 2000. View at Publisher · View at Google Scholar - M. P. Shores, L. G. Beauvais, and J. R. Long, “$[{\text{Cd}}_{2}{({\text{H}}_{2}\text{O})}_{4}][{\text{Re}\hspace{0.17em}}_{6}{\text{S}}_{8}{(\text{CN})}_{6}]\cdot 14{\text{H}}_{2}\text{O}$: a cyano-bridged cluster-cluster framework solid with accessible cubelike cavities,”
*Inorganic Chemistry*, vol. 38, no. 8, pp. 1648–1649, 1999. View at Google Scholar - Y. Kim, S.-M. Park, and S.-J. Kim, “Three-dimensional framework containing $\text{Mn}{(\text{salen})}^{+}$ and ${\text{Re}}_{6}{\text{Se}}_{8}{(\text{CN})}_{6}^{4-}$ cluster,”
*Inorganic Chemistry Communications*, vol. 5, no. 8, pp. 592–595, 2002. View at Publisher · View at Google Scholar - M. V. Bennett, L. G. Beauvais, M. P. Shores, and J. R. Long, “Expanded Prussian blue analogues incorporating ${[{\text{Re}}_{6}{\text{Se}}_{8}{(\text{CN})}_{6}]}^{\text{3}-\text{/4}-}$ clusters: adjusting porosity via charge balance,”
*Journal of the American Chemical Society*, vol. 123, no. 33, pp. 8022–8032, 2001. View at Publisher · View at Google Scholar - N. G. Naumov, S. Cordier, and C. Perrin, “An extended open framework based on disordered ${[{\text{Nb}}_{6}{\text{Cl}}_{9}{\text{O}}_{3}{(\text{CN})}_{6}]}^{\text{5}-}$-cluster units: synthesis and crystal structure of ${\text{Cs}}_{3}{\text{Mn[Nb}}_{6}{\text{Cl}}_{9}{\text{O}}_{3}{\text{(CN)}}_{6}\text{]}\cdot 0.6{\text{H}}_{2}\text{O}$,”
*Solid State Sciences*, vol. 7, no. 12, pp. 1517–1521, 2005. View at Publisher · View at Google Scholar - L. G. Beauvais and J. R. Long, “Synthesis and characterization of prussian blue analogues incorporating the edge-bridged octahedral ${[{\text{Zr}}_{6}{\text{BCl}}_{12}]}^{2+}$ cluster core,”
*Inorganic Chemistry*, vol. 45, no. 1, pp. 236–243, 2006. View at Publisher · View at Google Scholar - S. B. Artemkina, N. G. Naumov, A. V. Virovets, and V. E. Fedorov, “3D-coordination cluster polymers ${\text{[Ln(H}}_{2}{\text{O)}}_{3}{\text{Re}}_{6}{\text{Te}}_{8}{\text{(CN)}}_{6}\text{]}\cdot n{\text{H}}_{2}\text{O(Ln}={\text{La}}^{3+},{\text{Nd}}^{3+}\text{)}$: direct structural analogy with the mononuclear ${\text{LnM(CN)}}_{6}\cdot n{\text{H}}_{2}\text{O}$ Family,”
*European Journal of Inorganic Chemistry*, vol. 2005, no. 1, pp. 142–146, 2005. View at Publisher · View at Google Scholar - L. G. Beauvais, M. P. Shores, and J. R. Long, “Cyano-bridged ${\text{Re}}_{6}{\text{Q}}_{8}(\text{Q}=\text{S},\text{Se})$ cluster-metal framework solids: a new class of porous materials,”
*Chemistry of Materials*, vol. 10, no. 12, pp. 3783–3786, 1998. View at Google Scholar - N. G. Naumov, A. V. Virovets, M. N. Sokolov, S. B. Artemkina, and V. E. Fedorov, “A novel framework type for inorganic clusters with cyanide ligands: crystal structures of ${\text{Cs}}_{2}{\text{Mn}}_{3}{[{\text{Re}}_{6}{\text{Se}}_{8}{(\text{CN})}_{6}]}_{2}\cdot 15{\text{H}}_{2}\text{O}$ and ${({\text{H}}_{3}\text{O})}_{2}{\text{Co}}_{3}{[{\text{Re}}_{6}{\text{Se}}_{8}{(\text{CN})}_{6}]}_{2}\cdot 14.5{\text{H}}_{2}\text{O}$,”
*Angewandte Chemie International Edition*, vol. 37, no. 13-14, pp. 1943–1945, 1998. View at Google Scholar - N. G. Naumov, A. V. Virovets, and V. E. Fedorov, “Unusually high porosity in polymeric cluster cyanides: the synthesis and crystal structure of ${({\text{H}}_{3}\text{O})}_{2}{\text{Zn}}_{3}{[{\text{Re}}_{6}{\text{Se}}_{8}{\text{(CN)}}_{6}]}_{2}\cdot 20{\text{H}}_{2}\text{O}$,”
*Inorganic Chemistry Communications*, vol. 3, no. 2, pp. 71–72, 2000. View at Publisher · View at Google Scholar - B. Yan, H. Zhou, and A. Lachgar, “Octahedral niobium chloride clusters as building blocks of templated prussian blue framework analogues,”
*Inorganic Chemistry*, vol. 42, no. 26, pp. 8818–8822, 2003. View at Publisher · View at Google Scholar - B. Yan, C. S. Day, and A. Lachgar, “Octahedral metal clusters as building units in a neutral layered honeycomb network, $[\text{Zn}{(\text{en})}_{2}][{\text{Nb}}_{6}{\text{Cl}}_{12}{(\text{CN})}_{6}]$,”
*Chemical Communications*, vol. 10, no. 21, pp. 2390–2391, 2004. View at Publisher · View at Google Scholar - Z. Yan, C. S. Day, and A. Lachgar, “The first coordination polymers and hydrogen bonded networks containing octahedral ${\text{Nb}}_{6}$ clusters and alkaline earth metal complexes,”
*Inorganic Chemistry*, vol. 44, no. 13, pp. 4499–4505, 2005. View at Publisher · View at Google Scholar - H. Zhou, C. S. Day, and A. Lachgar, “Assembly of hybrid inorganic-organic materials from octahedral ${\text{Nb}}_{6}$ clusters and metal complexes,”
*Chemistry of Materials*, vol. 16, no. 24, pp. 4870–4877, 2004. View at Publisher · View at Google Scholar - H. Zhou and A. Lachgar, “Supramolecular assemblies built of ${[{\text{Nb}}_{6}{\text{Cl}}_{12}{(\text{CN})}_{6}]}^{4-}$ octahedral metal clusters and ${[\text{Mn}(acacen)]}^{+}$ complexes,”
*Crystal Growth and Design*, vol. 6, no. 10, pp. 2384–2391, 2006. View at Publisher · View at Google Scholar - J. Zhang and A. Lachgar, “Superexpanded Prussian-blue analogue with ${[\text{Fe}{(\text{CN})}_{6}]}^{4-}$, ${[{\text{Nb}}_{6}{\text{Cl}}_{12}{(\text{CN})}_{6}]}^{4-}$, and ${[\text{Mn}(salen)]}^{+}$ as building units,”
*Journal of the American Chemical Society*, vol. 129, no. 2, pp. 250–251, 2007. View at Publisher · View at Google Scholar - J.-J. Zhang, H.-J. Zhou, and A. Lachgar, “Directed assembly of cluster-based supramolecules into one-dimensional coordination polymers,”
*Angewandte Chemie International Edition*, vol. 46, no. 26, pp. 4995–4998, 2007. View at Publisher · View at Google Scholar - H. J. Zhou and A. Lachgar, “Octahedral metal clusters ${[{\text{Nb}}_{6}{\text{Cl}}_{12}{(\text{CN})}_{6}]}^{4-}$ as molecular building blocks: from supramolecular assemblies to coordination polymers,”
*European Journal of Inorganic Chemistry*, vol. 2007, no. 8, pp. 1053–1066, 2007. View at Publisher · View at Google Scholar - H. Zhou, K. C. Strates, M. A. Munoz et al., “Inorganic crystal engineering through cation metathesis: one-, two-, and three-dimensional cluster-based coordination polymers,”
*Chemistry of Materials*, vol. 19, no. 9, pp. 2238–2246, 2007. View at Publisher · View at Google Scholar - J. H. Yoon, J. H. Lim, H. C. Kim, and C. S. Hong, “Cyanide-bridged single-molecule magnet constructed by an octacoordinated ${[\text{W}{(\text{CN})}_{6}(\text{bpy})]}^{-}$ anion,”
*Inorganic Chemistry*, vol. 45, no. 24, pp. 9613–9615, 2006. View at Publisher · View at Google Scholar - Z.-H. Ni, H.-Z. Kou, L.-F. Zhang et al., “${[{\text{Mn}}^{\text{III}}(salen)]}_{6}{[{\text{Fe}}^{\text{III}}(\text{bpmb}){(\text{CN})}_{2}]}_{6}\xb77{\text{H}}_{2}\text{O}$: a cyanide-bridged nanosized molecular wheel,”
*Angewandte Chemie International Edition*, vol. 44, no. 47, pp. 7742–7745, 2005. View at Publisher · View at Google Scholar - H. Miyasaka, H. Takahashi, T. Madanbashi, K.-I. Sugiura, R. Clerac, and H. Nojiri, “Cyano-bridged ${\text{Mn}}^{\text{III}}{}_{3}\text{M}({\text{M}}^{\text{III}}=\text{Fe, Cr})$ complexes: synthesis, structure, and magnetic properties,”
*Inorganic Chemistry*, vol. 44, no. 17, pp. 5969–5971, 2005. View at Publisher · View at Google Scholar - M. Yuan, S. Gao, H.-L. Sun, and G. Su, “An antiferromagnetic Mn(III) chain bridged by hydrogencyanamide: ${[{\text{Mn}}^{\text{III}}(5\text{-Brsalen})({\mu}_{1,3}\text{-NCNH})]}_{n}$,”
*Inorganic Chemistry*, vol. 43, no. 26, pp. 8221–8223, 2004. View at Publisher · View at Google Scholar - H. Miyasaka, R. Clerac, W. Wernsdorfer et al., “A dimeric manganese(III) tetradentate Schiff base complex as a single-molecule magnet,”
*Angewandte Chemie International Edition*, vol. 43, no. 21, pp. 2801–2805, 2004. View at Publisher · View at Google Scholar - J. M. Ready and E. N. Jacobsen, “Highly active oligomeric (salen)Co catalysts for asymmetric epoxide ring-opening reactions,”
*Journal of the American Chemical Society*, vol. 123, no. 11, pp. 2687–2688, 2001. View at Publisher · View at Google Scholar - H. Li, Z. J. Zhong, C.-Y. Duan, X.-Z. You, T. C. W. Mak, and B. Wu, “Synthesis and crystal structure of a manganese(III) complex with the tetradentate schiff base N,${N}^{\prime}$-ethylenebis(salicylideneiminato),”
*Journal of Coordination Chemistry*, vol. 41, no. 3, pp. 183–189, 1997. View at Publisher · View at Google Scholar - M. Suzuki, T. Ishikawa, A. Harada, S. Ohba, M. Sakamoto, and Y. Nishida, “Chemical mechanism of dioxygen activation by manganese(III) Schiff base compound in the presence of aliphatic aldehydes,”
*Polyhedron*, vol. 16, no. 15, pp. 2553–2561, 1997. View at Publisher · View at Google Scholar - J. G. Converse and R. E. McCarley, “Chemistry of polynuclear metal halides. VI. Magnetic susceptibility studies of some niobium and tantalum halide cluster derivatives,”
*Inorganic Chemistry*, vol. 9, no. 6, pp. 1361–1366, 1970. View at Publisher · View at Google Scholar - O. Kahn,
*Molecular Magnetism*, Wiley-VCH, New York, NY, USA, 1993. - GADDS V4.1.14, “General Area Detector Diffraction System Program for Instrument Control and Data Collection,” BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA.
- EVA V8.0, “Graphics Program for 2-dimensional Data evaluation and Presentation,” BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA.
- A. Panja, N. Shaikh, M. Ali, P. Vojtisek, and P. Banerjee, “Structural characterization of a new manganese(III)-salen complex [${\text{H}}_{2}\text{salen}$ = N,${N}^{\prime}$-bis(salicylidene)ethane-1,2-diamine] and study of its electron transfer kinetics with hydroquinone and catechol,”
*Polyhedron*, vol. 22, no. 9, pp. 1191–1198, 2003. View at Publisher · View at Google Scholar - Z. P. Zheng, T. G. Gray, and R. H. Holm, “Synthesis and structures of solvated monoclusters and bridged di- and triclusters based on the cubic building block ${[{\text{Re}}_{6}{({\mu}_{3}\text{-Se})}_{8}]}^{2+}$,”
*Inorganic Chemistry*, vol. 38, no. 21, pp. 4888–4895, 1999. View at Publisher · View at Google Scholar - H. D. Selby, P. Orto, M. D. Carducci, and Z. P. Zheng, “Novel concentration-driven structural interconversion in shape-specific solids supported by the octahedral ${[{\text{Re}}_{6}{({\mu}_{3}\text{-Se})}_{8}]}^{2+}$ cluster core,”
*Inorganic Chemistry*, vol. 41, no. 24, pp. 6175–6177, 2002. View at Publisher · View at Google Scholar - B. K. Roland, H. D. Selby, M. D. Carducci, and Z. P. Zheng, “Built to order: molecular tinkertoys from the ${[{\text{Re}}_{6}{({\mu}_{3}\text{-Se})}_{8}]}^{2+}$ clusters,”
*Journal of the American Chemical Society*, vol. 124, no. 13, pp. 3222–3223, 2002. View at Google Scholar - B. K. Roland, W. H. Flora, H. D. Selby, N. R. Armstrong, and Z. Zheng, “Dendritic arrays of ${[{\text{Re}}_{6}{({\mu}_{3}\text{-Se})}_{8}]}^{2+}$ core-containing clusters: exploratory synthesis and electrochemical studies,”
*Journal of the American Chemical Society*, vol. 128, no. 20, pp. 6620–6625, 2006. View at Publisher · View at Google Scholar - H. Hanika-Heidl, S. E. H. Etaiw, M. S. Ibrahim, A. S. Bader El-Din, and R. D. Fischer, “New supramolecular organotin(IV)/-copper(I) cyanides containing the unique $\{{\text{Cu}}^{\text{I}}{(\mu \text{-CN})}_{2}\}$ building block,”
*Journal of Organometallic Chemistry*, vol. 684, no. 1-2, pp. 329–337, 2003. View at Publisher · View at Google Scholar - T. Soma, H. Yuge, and T. Iwamoto, “Three-dimensional interpenetrating double and triple framework structures in $[\text{Cd}{(\text{bpy})}_{2}{\{\text{Ag}{(\text{CN})}_{2}\}}_{2}]$ and $[\text{Cd}(\text{pyrz})\{{\text{Ag}}_{2}{(\text{CN})}_{3}\}\{\text{Ag}{(\text{CN})}_{2}\}]$,”
*Angewandte Chemie International Edition*, vol. 33, no. 15-16, pp. 1665–1666, 1994. View at Publisher · View at Google Scholar - V. Niel, M. C. Munoz, A. B. Gaspar, A. Galet, G. Levchenko, and J. A. Real, “Thermal-, pressure-, and light-induced spin transition in novel cyanide-bridged FeII-AgI bimetallic compounds with three-dimensional interpenetrating double structures $\{{\text{Fe}}^{\text{II}}{\text{L}}_{\text{x}}{[\text{Ag}{(\text{CN})}_{2}]}_{2}\}\xb7\text{G}$,”
*Chemistry*, vol. 8, no. 11, pp. 2446–2453, 2002. View at Publisher · View at Google Scholar - B. F. Abrahams, M. J. Hardie, B. F. Hoskins, R. Robson, and E. E. Sutherland,
*Chemical Communications*, pp. 1049–1050, 1994. - H.-Z. Kou, Y.-B. Jiang, B. C. Zhou, and R.-J. Wang, “Cyano-bridged 2D CuII-CrIII coordination polymers: structural evidence for formation of a polymeric macrocyclic metallic compound,”
*Inorganic Chemistry*, vol. 43, no. 10, pp. 3271–3276, 2004. View at Publisher · View at Google Scholar - S. R. Batten, B. F. Hoskins, and R. Robson, “Two interpenetrating 3D networks which generate spacious sealed-off compartments enclosing of the order of 20 solvent molecules in the structures of Zn(CN)(${\text{NO}}_{3}$)(tpt)2/3.solv (tpt = 2,4,6-tri(4-pyridyl)-1,3,5-triazine, solv = .apprx.3/4C2H2Cl4.cntdot.3/4${\text{CH}}_{3}$OH or .apprx.3/2CH${\text{Cl}}_{3}$.cntdot.1/3${\text{CH}}_{3}$OH),”
*Journal of the American Chemical Society*, vol. 117, no. 19, pp. 5385–5386, 1995. View at Publisher · View at Google Scholar - H. Weitzel, “Ikistallstrukturverfeinerungen von Wolframiten und columbiten,”
*Zeitschrift für Kristallographie*, vol. 144, pp. 238–258, 1976. View at Google Scholar - L. M. Kuznetsov, A. N. Tsvigunov, and K. P. Burdina,
*Geokhimiya*, p. 254, 1979. - A. Nägele, J. Glaser, and H.-J. Meyer, “New syntheses, new structure refinement, electronic structure, and magnetism,”
*Zeitschrift für Anorganische und Allgemeine Chemie*, vol. 627, no. 2, pp. 244–249, 2001. View at Publisher · View at Google Scholar - J. G. Converse and R. E. McCarley, “Chemistry of polynuclear metal halides. VI. Magnetic susceptibility studies of some niobium and tantalum halide cluster derivatives,”
*Inorganic Chemistry*, vol. 9, no. 6, pp. 1361–1366, 1970. View at Publisher · View at Google Scholar - Q. Shi, R. Cao, X. Li, J. H. Luo, M. C. Hong, and Z. N. Chen, “Syntheses, structures, electrochemistry and magnetic properties of chain-like dicyanamide manganese(III) and iron(III) complexes with salen ligand,”
*New Journal of Chemistry*, vol. 26, pp. 1397–1401, 2002. View at Publisher · View at Google Scholar - A. Panja, N. Shaikh, P. V. Vojtisek, S. Gao, and P. Banerjee, “Synthesis, crystal structures and magnetic properties of 1D polymeric $[{\text{Mn}}^{\text{III}}(\text{salen}){\text{N}}_{3}]$ and $[{\text{Mn}}^{\text{III}}(\text{salen})\text{Ag}{(\text{CN})}_{2}]$ complexes,”
*New Journal of Chemistry*, vol. 26, no. 8, pp. 1025–1028, 2002. View at Publisher · View at Google Scholar