Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2012, Article ID 186948, 2 pages

Photocatalytic Materials

1Department of Materials Engineering, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018, China
2Division of Polymer and Composite, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
3Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison 53706, USA

Received 13 December 2012; Accepted 13 December 2012

Copyright © 2012 Guohua Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye, “Nano-photocatalytic materials: possibilities and challenges,” Advanced Materials, vol. 24, pp. 229–251, 2012. View at Google Scholar
  2. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Wang, G. Jiang, Y. Ding et al., “Photocatalytic activity of heterostructures based on TiO2 and halloysite nanotubes,” ACS Applied Materials & Interfaces, vol. 3, pp. 4154–4158, 2011. View at Google Scholar
  4. S. Yin, B. Liu, P. Zhang, T. Morikawa, K. I. Yamanaka, and T. Sato, “Photocatalytic oxidation of NOx under visible led light irradiation over nitrogen-doped titania particles with iron or platinum loading,” Journal of Physical Chemistry C, vol. 112, no. 32, pp. 12425–12431, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Ide, M. Matsuoka, and M. Ogawa, “Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate,” Journal of the American Chemical Society, vol. 132, no. 47, pp. 16762–16764, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Jiang, R. Wang, H. Jin et al., “Preparation of Cu2O/TiO2 composite porous carbon microspheres as efficient visible light-responsive photocatalysts,” Powder Technology, vol. 212, no. 1, pp. 284–288, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Jiang, X. Wang, Y. Zhou et al., “Hollow TiO2 nanocages with Rubik-like structure for high-performance photocatalysts,” Materials Letters, vol. 89, pp. 59–62, 2012. View at Google Scholar
  8. G. Jiang, R. Wang, X. Wang et al., “Novel highly active visible-light-induced photocatalysts based on BiOBr with Ti doping and Ag decorating,” ACS Applied Materials & Interfaces, vol. 4, pp. 4440–4444, 2012. View at Google Scholar
  9. D. Jian, P. X. Gao, W. Cai et al., “Synthesis, characterization, and photocatalytic properties of ZnO/(La,Sr)CoO3 composite nanorod arrays,” Journal of Materials Chemistry, vol. 19, no. 7, pp. 970–975, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Huang, K. Ding, Y. Hou, X. Wang, and X. Fu, “Synthesis and photocatalytic activity of Zn2GeO4 nanorods for the degradation of organic pollutants in water,” ChemSusChem, vol. 1, no. 12, pp. 1011–1019, 2008. View at Google Scholar · View at Scopus