Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2012, Article ID 192731, 5 pages
http://dx.doi.org/10.1155/2012/192731
Research Article

Blue Phosphorescent Organic Light-Emitting Devices with the Emissive Layer of mCP:FCNIr(pic)

Department of Electronics Engineering, Dankook University, San 29, Anseo-dong, Cheonan, Chungnam 330-714, Republic of Korea

Received 15 February 2012; Accepted 17 April 2012

Academic Editor: Etienne Baranoff

Copyright © 2012 Ji Geun Jang and Hyun Jin Ji. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. W. D. D'Andrade and S. R. Forrest, “White organic light-emitting devices for solid-state lighting,” Advanced Materials, vol. 16, no. 18, pp. 1585–1595, 2004. View at Publisher · View at Google Scholar
  2. D. Yao, S. Zhao, J. Guo et al., “Hydroxyphenyl-benzothiazole based full color organic emitting materials generated by facile molecular modification,” Journal of Materials Chemistry, vol. 21, no. 11, pp. 3568–3570, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. S. H. Kim, J. S. Jang, and J. Y. Lee, “High efficiency phosphorescent organic light-emitting diodes using carbazole-type triplet exciton blocking layer,” Applied Physics Letters, vol. 90, no. 22, Article ID 223505, 3 pages, 2007. View at Publisher · View at Google Scholar
  4. Z. Wu, Y. Xiong, J. L. Zou et al., “High-Triplet-Energy Poly(9,90-bis(2-ethylhexyl)-3,6-fluorene) as Host for Blue and Green Phosphorescent Complexes,” Advanced Materials, vol. 20, article 2359, 2008. View at Google Scholar
  5. Y. Kawamura, K. Goushi, J. Brooks, J. Brown, H. Sasabe, and C. Adachi, “100% phosphorescence quantum efficiency of Ir(III) complexes in organic semiconductor films,” Applied Physics Letters, vol. 86, no. 7, Article ID 071104, 3 pages, 2005. View at Publisher · View at Google Scholar
  6. Z. H. Zhao, J. Li, P. Lu, and Y. Yang, “Fluorescent, carrier-trapping dopants for highly efficient single-layer polyfluorene LEDs,” Advanced Functional Materials, vol. 17, no. 13, pp. 2203–2210, 2007. View at Publisher · View at Google Scholar
  7. D. Beljonne, J. Cornil, R. H. Friend, R. A. J. Janssen, and J. L. Bredas, “Influence of chain length and derivatization on the lowest singlet and triplet states and intersystem crossing in oligothiophenes,” Journal of the American Chemical Society, vol. 118, no. 27, pp. 6453–6461, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. K. S. Yook, S. O. Jeon, C. W. Joo, and J. Y. Lee, “High efficiency deep blue phosphorescent organic light-emitting diodes,” Organic Electronics, vol. 10, no. 1, pp. 170–173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. M. Jeon, J. W. Kim, C. W. Lee, and M. S. Gong, “Blue organic light-emitting diodes using novel spiro[fluorene-benzofluorene]-type host materials,” Dyes and Pigments, vol. 83, no. 1, pp. 66–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Zhu, A. P. Kulkarni, and S. A. Jenekhe, “Phenoxazine-Based Emissive Donor-Acceptor Materials for Efficient Organic Light-Emitting Diodes,” Chemistry of Materials, vol. 17, article 5227, 2005. View at Google Scholar
  11. J. W. Lee, N. Chopra, S. H. Eom et al., “Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices,” Applied Physics Letters, vol. 93, no. 12, Article ID 123306, 3 pages, 2008. View at Publisher · View at Google Scholar
  12. J. S. Park, W. S. Jeon, J. H. Yu, R. Pode, and J. H. Kwon, “Efficiency optimization of green phosphorescent organic light-emitting device,” Thin Solid Films, vol. 519, no. 10, pp. 3259–3263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Han, G. Xie, H. Xu et al., “Towards Highly Efficient Blue-Phosphorescent Organic Light-Emitting Diodes with Low Operating Voltage and Excellent Efficiency Stability,” Chemistry—A EuropeanJournal, vol. 17, article 445, 2011. View at Google Scholar
  14. S. H. Eom, Y. Zheng, E. Wrzesniewski et al., “Effect of electron injection and transport materials on efficiency of deep-blue phosphorescent organic light-emitting devices,” Organic Electronics, vol. 10, no. 4, pp. 686–691, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. O. Jeon, K. S. Yook, C. W. Joo, and J. Y. Lee, “High-efficiency deep-blue-phosphorescent organic light-emitting diodes using a phosphine oxide and a phosphine sulfide high-triplet-energy host material with bipolar charge-transport properties,” Advanced Materials, vol. 22, no. 16, pp. 1872–1876, 2010. View at Publisher · View at Google Scholar