Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2012, Article ID 235028, 8 pages
http://dx.doi.org/10.1155/2012/235028
Research Article

Stress Corrosion Cracking of Steel and Aluminum in Sodium Hydroxide: Field Failure and Laboratory Test

1Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, 81310 Johor, Malaysia
2Department of Refrigeration and Air Conditioning, Politeknik Negeri Bandung, Bandung 40012, Indonesia
3Faculty of Maritime Studies and Marine Science, University Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia

Received 30 December 2011; Accepted 30 January 2012

Academic Editor: Pavel Lejcek

Copyright © 2012 Y. Prawoto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. P. Hoar and J. M. West, “Mechano-chemical anodic dissolution of austenitic stainless steel in hot chloride solution,” Proceeding of the Royal Society A, vol. 268, pp. 304–315, 1962. View at Google Scholar
  2. T. P. Hoar and J. C. Scully, “Mechanochemical anodic dissolution of austenitic stainless steel in hot chloride solution at controlled electrode potential,” Journal of Electrochemical Society, vol. 111, no. 3, pp. 348–352, 1964. View at Publisher · View at Google Scholar
  3. J. L. Albarran, L. Martinez, and H. F. Lopez, “Effect of heat treatment on the stress corrosion resistance of a microalloyed pipeline steel,” Corrosion Science, vol. 41, no. 6, pp. 1037–1049, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Nakayama, “Inhibitory effects of nitrilotris(methylenephosphonic acid) on cathodic reactions of steels in saturated Ca(OH)2 solutions,” Corrosion Science, vol. 42, no. 11, pp. 1897–1920, 2000. View at Google Scholar · View at Scopus
  5. A. El-Sayed, K. M. El-Sobki, and V. K. Gouda, “Stress corrosion behaviour of 410 stainless steel in boiling 70% NaOH solution,” Surface Technology, vol. 14, no. 3, pp. 245–256, 1981. View at Google Scholar · View at Scopus
  6. A. K. Jha, P. R. Narayanan, K. Sreekumar, and P. P. Sinha, “Cracking of Al–4.5Zn–1.5Mg aluminium alloy propellant tank—a metallurgical investigation,” Engineering Failure Analysis, vol. 17, no. 2, pp. 562–570, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Conde, B. J. Fernández, and J. J. de Damborenea, “Characterization of the SCC behaviour of 8090 Al–Li alloy by means of the slow-strain-rate technique,” Corrosion Science, vol. 40, no. 1, pp. 91–102, 1998. View at Google Scholar · View at Scopus
  8. A. F. Oliveira Jr., M. C. de Barros, K. R. Cardoso, and D. N. Travessa, “The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminium alloys,” Materials Science and Engineering A, vol. 379, no. 1-2, pp. 321–326, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. R. P. Wei, M. Gao, and P. S. Pao, “The role of magnesium in CF and SCC of 7000 series aluminum alloys,” Scripta Metallurgica, vol. 18, no. 11, pp. 1195–1198, 1984. View at Google Scholar · View at Scopus
  10. Y. E. Wu and Y. T. Wang, “Enhanced SCC resistance of AA7005 welds with appropriate filler metal and post-welding heat treatment,” Theoretical and Applied Fracture Mechanics, vol. 54, no. 1, pp. 19–26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. J. C. Lin, H. L. Liao, W. D. Jehng, C. H. Chang, and S. L. Lee, “Effect of heat treatments on the tensile strength and SCC-resistance of AA7050 in an alkaline saline solution,” Corrosion Science, vol. 48, no. 10, pp. 3139–3156, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Prawoto, A. Moin, M. Tadjuddin, and W. B. Wan Nik, “Effect of microstructures on SCC of steel: field failure analysis case study and laboratory test result,” Engineering Failure Analysis, vol. 18, no. 7, pp. 1858–1866, 2011. View at Publisher · View at Google Scholar
  13. Y. Prawoto, “Incorporating the morphological difference of corrosion cracks in computational fracture mechanics approach,” Computational Materials Science, vol. 56, pp. 166–168, 2012. View at Publisher · View at Google Scholar
  14. D. L. McDowell and F. P.E. Dunne, “Microstructure-sensitive computational modeling of fatigue crack formation,” International Journal of Fatigue, vol. 32, no. 9, pp. 1521–1542, 2010. View at Publisher · View at Google Scholar
  15. G. Rondelli, B. Vicentini, and E. Sivieri, “Stress corrosion cracking of stainless steels in high temperature caustic solutions,” Corrosion Science, vol. 39, no. 6, pp. 1037–1049, 1997. View at Google Scholar · View at Scopus
  16. A. S. Afolabi and J. O. Borode, “Stress corrosion cracking susceptibility of medium carbon steel in caustic and potash media,” Australian Journal of Technology, vol. 10, pp. 165–170, 2007. View at Google Scholar
  17. R. O. Rihan and S. Nešić, “Erosion-corrosion of mild steel in hot caustic. Part I: NaOH solution,” Corrosion Science, vol. 48, no. 9, pp. 2633–2659, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Y. Zou and D. T. Chin, “Mechanism of steel corrosion in concentrated NaOH solutions,” Electrochimica Acta, vol. 32, no. 12, pp. 1751–1756, 1987. View at Google Scholar · View at Scopus
  19. ASTM Standard: G38-07, Standard Practice for Making and Using C-Ring Stress-Corrosion Test Specimen, ASTM Annual Book of Standards, 2007.
  20. F. Goutier, S. Valette, A. Vardelle, and P. Lefort, “Oxidation of stainless steel 304 L in carbon dioxide,” Corrosion Science, vol. 52, no. 7, pp. 2403–2412, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Svenningsen, M. H. Larsen, J. H. Nordlien, and K. Nisancioglu, “Effect of high temperature heat treatment on intergranular corrosion of AlMgSi(Cu) model alloy,” Corrosion Science, vol. 48, no. 1, pp. 258–272, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. K. S. Chan, “Roles of microstructure in fatigue crack initiation,” International Journal of Fatigue, vol. 32, no. 9, pp. 1428–1447, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. R. Wenman, K. R. Trethewey, S. E. Jarman, and P. R. Chard-Tuckey, “A finite-element computational model of chloride-induced transgranular stress-corrosion cracking of austenitic stainless steel,” Acta Materialia, vol. 56, no. 16, pp. 4125–4136, 2008. View at Publisher · View at Google Scholar · View at Scopus