Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2012 (2012), Article ID 406791, 7 pages
Research Article

High and Low Temperature Properties of FT-Paraffin-Modified Bitumen

1School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran 1684613114, Iran
2Department of Supervision and Control, Iran Ministry of Road and Transportation, North Kargar St., Tehran 1416753941, Iran
3Technical & Soil Mechanics Lab, Iran Ministry of Road & Transportation, North Kargar St., Tehran 1439956111, Iran

Received 13 January 2012; Accepted 20 April 2012

Academic Editor: Pedro Partal López

Copyright © 2012 Hassan Fazaeli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper presents the results of an experimental research on the effects of “Fischer Tropsch-Paraffin” (Sasobit) content on physical and rheological properties of Sasobit modified bitumen at various operational temperatures. For this purpose, bitumen with a Performance Grade (PG) of 58–22 is selected as the base and later it is modified with 1, 2, 2.5, 3, and 4 weight percent of FT-Paraffin (Sasobit). The performance of modified bitumen at high, intermediate, and low temperatures is evaluated based on Strategic Highway Research Program (SHRP) Superpave tests. Results of the study show that FT-paraffin improves the performance of bitumen at high temperatures in addition to increasing the resistance of mixture against permanent deformation. Despite the advantages of FT-paraffin on bitumen performance at high temperatures, it does not show a considerable influence on the intermediate and low temperature performance of bitumen. The effect of FT-paraffin content on the viscosity of modified bitumen is also investigated using Brookfield Viscometer Apparatus. Results show that increasing the additive content lowers the viscosity of modified bitumen. This in return can reduce the mixing and compaction temperature of asphalt mixtures.