Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2012, Article ID 452383, 11 pages
http://dx.doi.org/10.1155/2012/452383
Research Article

Electrical Properties of a CeO2-Mix System Elaborated at 600C

1Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université du Sud Toulon-Var, BP 20132, 83957 La Garde Cedex, France
2Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Morocco

Received 29 July 2011; Accepted 26 December 2011

Academic Editor: V. P. S. Awana

Copyright © 2012 Lamia Bourja et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The electrical conduction of a series of polycristalline [(1−x)CeO2·x/2Bi2O3] samples has been analyzed using electrical impedance spectroscopy, in the temperature range 25 to C. Samples have been prepared via a coprecipitation route followed by a pyrolysis process at C. For compositions , Ce1−xBixO2−x/2 solid solutions, with fluorite cubic structure, are obtained. In the composition range , the system is biphasic with coexistence of cubic and tetragonal structures. To interpret the Nyquist representations of electrical analyses, various impedance models including constant phase elements and Warburg impedances have been used. In the biphasic range (), the conductivity variation might be related to the increasing fraction of two tetragonal β′ and β-Bi2O3 phases. The stabilization of the tetragonal phase coexisting with substituted ceria close to composition is associated with a high conduction of the mix system CeO2-Bi2O3.