Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2012 (2012), Article ID 640497, 6 pages
Research Article

Magnetic Forces Investigation of Bulk HTS over Permanent Magnetic Guideway under Different Lateral Offset with 3D-Model Numerical Method

Luoyang Institute of Science and Technology, Henan, Luoyang 471023, China

Received 4 July 2012; Accepted 27 September 2012

Academic Editor: Mark Blamire

Copyright © 2012 Yiyun Lu and Qiaohong Dang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Magnetic forces of a cylinder shape bulk high-temperature superconductor (HTS) over a permanent magnet guideway (PMG) are studied mathematically. One cylindrical bulk HTS with a diameter of 30 mm and 15 mm in height is used. Two types of PMG are employed for external magnetic fields consideration. The relationship of magnetic forces of bulk HTS under different lateral offsets over PMG is studied with 3D-model finite element method (FEM). The calculation results show that the maximum magnetic levitation force of bulk HTS over PMG is tightly related to the applied magnetic field distribution. For the symmetrical PMG, the maximum magnetic levitation force decreases linearly with the increase of lateral offset of the bulk sample. For the Halbach PMG, when lateral offset changes from 0 mm to 25 mm, the maximum magnetic levitation force increases with the increase of lateral offset of the bulk HTS. When the lateral offset exceeds the center of the Halbach by 25 mm, the maximum levitation force decreases rapidly with the increase of the lateral offset of the bulk sample.