Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2012 (2012), Article ID 679206, 6 pages
http://dx.doi.org/10.1155/2012/679206
Research Article

Treatment of Color Filter Wastewater by Fresnel Lens Enhanced Solar Photo-Fenton Process

Department of Safety, Health, and Environmental Engineering, National United University, Miao-Li 36063, Taiwan

Received 17 February 2012; Accepted 27 March 2012

Academic Editor: Yu-Pei Huang

Copyright © 2012 Wen-shiuh Kuo and Chia-ling Wu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Al Momani, O. Gonzalez, C. Sans, and S. Esplugas, “Combining photo-Fenton process with biological sequencing batch reactor for 2,4-dichlorophenol degradation,” Water Science and Technology, vol. 49, no. 4, pp. 293–298, 2004. View at Google Scholar · View at Scopus
  2. L. A. Perez-Estrada, S. Malato, A. Aguera, and A. R. Fernandez-Alba, “Degradation of dipyrone and its main intermediates by solar AOPs: identification of intermediate products and toxicity assessment,” Catalysis Today, vol. 129, pp. 207–214, 2007. View at Google Scholar
  3. M. I. Maldonado, P. C. Passarinho, I. Oller et al., “Photocatalytic degradation of EU priority substances: a comparison between TiO2 and Fenton plus photo-Fenton in a solar pilot plant,” Journal of Photochemistry and Photobiology A, vol. 185, pp. 354–363, 2007. View at Google Scholar
  4. S. Malato, P. Fernandez-Ibanez, M. I. Maldonado, J. Blanco, and W. Gernjak, “Decontamination and distinfection of water by solar photocatalysis: recent overview and trends,” Catalysis Today, vol. 147, pp. 1–59, 2009. View at Google Scholar
  5. J. M. Monteagudo and A. Durán, “Fresnel lens to concentrate solar energy for the photocatalytic decoloration and mineralization of orange II in aqueous solution,” Chemosphere, vol. 65, no. 7, pp. 1242–1248, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. R. M. Sellers, “Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate,” The Analyst, vol. 105, no. 1255, pp. 950–954, 1980. View at Google Scholar · View at Scopus
  7. APHA/AWWA/WEF, Standard Methods for the Examination of Water and Wastewater, Washington, DC, USA, 20th edition, 2000.
  8. O. González, C. Sans, and S. Esplugas, “Sulfamethoxazole abatement by photo-Fenton. Toxicity, inhibition and biodegradability assessment of intermediates,” Journal of Hazardous Materials, vol. 146, no. 3, pp. 459–464, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. A. S. Koparal, Y. Yavuz, C. Gürel, and Ü. B. Öǧütveren, “Electrochemical degradation and toxicity reduction of C.I. Basic Red 29 solution and textile wastewater by using diamond anode,” Journal of Hazardous Materials, vol. 145, no. 1-2, pp. 100–108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. H. Sun, S. P. Sun, G. L. Wang, and L. P. Qiao, “Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process,” Dyes and Pigments, vol. 74, no. 3, pp. 647–652, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. I. B. S. Will, J. E. F. Moraes, A. C. S. C. Teixeira, R. Guardani, and C. A. O. Nascimento, “Photo-Fenton degradation of wastewater containing organic compounds in solar reactors,” Separation and Purification Technology, vol. 34, no. 1–3, pp. 51–57, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Rodriguez, V. Sarria, S. Esplugas, and C. Pulgarin, “Photo-fenton treatment of a biorecalcitrant wastewater generated in textile activities: biodegradability of the photo-treated solution,” Journal of Photochemistry and Photobiology A, vol. 151, no. 1–3, pp. 129–135, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. W. S. Kuo and Y. Y. Ho, “Treatment of pesticide rinsate towards reuse by photosensitized Fenton-like process,” Water Science and Technology, vol. 62, no. 6, pp. 1424–1431, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Al Momani, “Impact of photo-oxidation technology on the aqueous solutions of nitrobenzene: degradation efficiency and biodegradability enhancement,” Journal of Photochemistry and Photobiology A, vol. 179, no. 1-2, pp. 184–192, 2006. View at Publisher · View at Google Scholar · View at Scopus