Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2012 (2012), Article ID 730810, 7 pages
http://dx.doi.org/10.1155/2012/730810
Research Article

The Influence of Na and Ti on the In Vitro Degradation and Bioactivity in 58S Sol-Gel Bioactive Glass

1Department of Pathophysiology, Wenzhou Medical College, Wenzhou 325035, China
2Biomaterials and Tissue Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
3College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China

Received 12 February 2012; Revised 8 May 2012; Accepted 25 May 2012

Academic Editor: Delia Brauer

Copyright © 2012 Shirong Ni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Li, A. E. Clark, and L. L. Hench, “An investigation of bioactive glass powders by sol-gel processing,” Journal of Applied Biomaterials, vol. 2, no. 4, pp. 231–239, 1991. View at Google Scholar · View at Scopus
  2. G. S. Polymeris, O. M. Goudouri, E. Kontonasaki, K. M. Paraskevopoulos, N. C. Tsirliganis, and G. Kitis, “Thermoluminescence as a probe in bioactivity studies; the case of 58S sol-gel bioactive glass,” Journal of Physics D, vol. 44, no. 39, pp. 1–8, 2011. View at Google Scholar
  3. L. L. Hench, “The story of bioglass,” Journal of Materials Science, vol. 17, no. 11, pp. 967–978, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Lao, E. Jallot, and J. M. Nedelec, “Strontium-delivering glasses with enhanced bioactivity: a new biomaterial for antiosteoporotic applications?” Chemistry of Materials, vol. 20, no. 15, pp. 4969–4973, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Vallet-Regí, A. J. Salinas, J. Román, and M. Gil, “Effect of magnesium content on the in vitro bioactivity of CaO-MgO- SiO2-P2O5 sol-gel glasses,” Journal of Materials Chemistry, vol. 9, no. 2, pp. 515–518, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Balamurugan, G. Balossier, S. Kannan, J. Michel, A. H. S. Rebelo, and J. M. F. Ferreira, “Development and in vitro characterization of sol-gel derived CaO-P2O5-SiO2-ZnO bioglass,” Acta Biomaterialia, vol. 3, no. 2, pp. 255–262, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Laczka, K. Cholewa-Kowalska, A. Laczka-Osyczka, M. Tworzydlo, and B. Turyna, “Gel-derived materials of a CaO-P2O5-SiO2 system modified by boron, sodium, magnesium, aluminum, and fluorine compounds,” Journal of Biomedical Materials Research, vol. 52, no. 4, pp. 601–612, 2000. View at Google Scholar
  8. K. E. Wallace and R. G. Hill, “Influence of sodium oxide content on bioactive glass properties,” Journal of Materials Science, vol. 10, no. 12, pp. 697–701, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. A. S. Monem, H. A. ElBatal, E. M. A. Khalil, M. A. Azooz, and Y. M. Hamdy, “In vivo behavior of bioactive phosphate glass-ceramics from the system P2O5-Na2O-CaO containing TiO2,” Journal of Materials Science, vol. 19, no. 3, pp. 1097–1108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. P. Zhong and D. C. Greenspan, “Processing and properties of sol-gel bioactive glasses,” Journal of Biomedical Materials Research B, vol. 53, no. 6, pp. 694–701, 2000. View at Google Scholar
  11. P. Ducheyne, S. R. Radin, and L. King, “The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. Dissolution,” Journal of Biomedical Materials Research, vol. 27, no. 1, pp. 25–34, 1993. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Arcos, D. C. Greenspan, and M. Vallet-Regí, “A new quantitative method to evaluate the in vitro bioactivity of melt and sol-gel-derived silicate glasses,” Journal of Biomedical Materials Research A, vol. 65, no. 3, pp. 344–351, 2003. View at Google Scholar · View at Scopus
  13. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, and T. Yamamuro, “Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3,” Journal of Biomedical Materials Research, vol. 24, no. 6, pp. 721–734, 1990. View at Publisher · View at Google Scholar · View at Scopus
  14. D. C. Greenspan, J. P. Zhong, and G. P. LaTorre, “Effect of surface area to volume ratio in vitro surface reactions of bioactive glass particulates,” Bioceramics, vol. 7, pp. 55–60, 1994. View at Google Scholar
  15. T. Kokubo and H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity?” Biomaterials, vol. 27, no. 15, pp. 2907–2915, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Xu and Y. Leng, “Theoretical analysis of calcium phosphate precipitation in simulated body fluid,” Biomaterials, vol. 26, no. 10, pp. 1097–1108, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Hollinger and M. Wong, “The integrated processes of hard tissue regeneration with special emphasis on fracture healing,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, vol. 82, no. 6, pp. 594–606, 1996. View at Google Scholar · View at Scopus
  18. A. W. Wren, F. R. Laffir, A. Kidari, and M. R. Towler, “The structural role of titanium in Ca-Sr-Zn-Si/Ti glasses for medical applications,” Journal of Non-Crystalline Solids, vol. 357, no. 3, pp. 1021–1026, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Navarro, M. Ginebra, J. Clément, S. Martínez, G. Avila, and J. A. Planell, “Physicochemical degradation of titania-stabilized soluble phosphate glasses for medical applications,” Journal of the American Ceramic Society, vol. 86, no. 8, pp. 1345–1352, 2003. View at Google Scholar · View at Scopus
  20. H. Grussaute, L. Montagne, G. Palavit, and J. L. Bernard, “Phosphate speciation in Na2O-CaO-P2O5-SiO2 and Na2O-TiO2-P2O5-SiO2 glasses,” Journal of Non-Crystalline Solids, vol. 263, no. 1–4, pp. 312–317, 2000. View at Publisher · View at Google Scholar · View at Scopus