Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2012, Article ID 819464, 6 pages
http://dx.doi.org/10.1155/2012/819464
Research Article

Comparison of Gelation Time and Polyalcohol Effect on Hydrogels from Domestic and Wild Silk Fibroins

1National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren’ai Road, Industrial Park, Suzhou 215123, China
2Industry Promoting Department, Suzhou Science and Technology Service Center, No. 979 Renmin Road, Suzhou 215002, China
3Department of Textile, Nantong Textile Vocational Technology College, No. 105 East Qingnian Road, Nantong 226007, China

Received 20 August 2011; Revised 20 January 2012; Accepted 8 February 2012

Academic Editor: Wen-Hua Sun

Copyright © 2012 Huijing Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Kopeček, “Hydrogel biomaterials: a smart future?” Biomaterials, vol. 28, no. 34, pp. 5185–5192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. L. Drury and D. J. Mooney, “Hydrogels for tissue engineering: scaffold design variables and applications,” Biomaterials, vol. 24, no. 24, pp. 4337–4351, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Van Vlierberghe, P. Dubruel, and E. Schacht, “Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review,” Biomacromolecules, vol. 12, no. 5, pp. 1387–1408, 2011. View at Publisher · View at Google Scholar
  4. C. Vepari and D. L. Kaplan, “Silk as a biomaterial,” Progress in Polymer Science (Oxford), vol. 32, no. 8-9, pp. 991–1007, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, “Structure and properties of silk hydrogels,” Biomacromolecules, vol. 5, no. 3, pp. 786–792, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Wang, J. A. Kluge, G. G. Leisk, and D. L. Kaplan, “Sonication-induced gelation of silk fibroin for cell encapsulation,” Biomaterials, vol. 29, no. 8, pp. 1054–1064, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Fini, A. Motta, P. Torricelli et al., “The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel,” Biomaterials, vol. 26, no. 17, pp. 3527–3536, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Guziewicz, A. Best, B. Perez-Ramirez, and D. L. Kaplan, “Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies,” Biomaterials, vol. 32, no. 10, pp. 2642–2650, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. B. B. Mandal, S. Kapoor, and S. C. Kundu, “Silk fibroin/polyacrylamide semi-interpenetrating network hydrogels forcontrolled drug release,” Biomaterials, vol. 30, no. 14, pp. 2826–2836, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Numata, T. Katashima, and T. Sakai, “State of water, molecular structure, and cytotoxicity of silk hydrogels,” Biomacromolecules, vol. 12, no. 6, pp. 2137–2144, 2011. View at Publisher · View at Google Scholar
  11. W. Tao, M. Li, and C. Zhao, “Structure and properties of regenerated Antheraea pernyi silk fibroin in aqueous solution,” International Journal of Biological Macromolecules, vol. 40, no. 5, pp. 472–478, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Q. Fang, D. Chen, Z. Yang, and M. Li, “In vitro and in vivo research on using Antheraea pernyi silk fibroin as tissue engineering tendon scaffolds,” Materials Science and Engineering C, vol. 29, no. 5, pp. 1527–1534, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Bhardwaj, S. Chakraborty, and S. C. Kundu, “Freeze-gelled silk fibroin protein scaffolds for potential applications in soft tissue engineering,” International Journal of Biological Macromolecules, vol. 49, no. 3, pp. 260–267, 2011. View at Publisher · View at Google Scholar
  14. W. Xiao, J. He, J. W. Nichol et al., “Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels,” Acta Biomaterialia, vol. 7, no. 6, pp. 2384–2393, 2011. View at Publisher · View at Google Scholar
  15. X. Hu, Q. Lu, L. Sun et al., “Biomaterials from ultrasonication-induced silk fibroin-hyaluronic acid hydrogels,” Biomacromolecules, vol. 11, no. 11, pp. 3178–3188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. K. Yoo, H. Y. Kweon, K. G. Lee, H. C. Lee, and C. S. Cho, “Preparation of semi-interpenetrating polymer networks composed of silk fibroin and poloxamer macromer,” International Journal of Biological Macromolecules, vol. 34, no. 4, pp. 263–270, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. G. M. Nogueira, M. A. De Moraes, A. C. D. Rodas, O. Z. Higa, and M. M. Beppu, “Hydrogels from silk fibroin metastable solution: formation and characterization from a biomaterial perspective,” Materials Science and Engineering C, vol. 31, no. 5, pp. 997–1001, 2011. View at Publisher · View at Google Scholar
  18. F. Cilurzo, C. G. M. Gennari, F. Selmin, L. A. Marotta, P. Minghetti, and L. Montanari, “An investigation into silk fibroin conformation in composite materials intended for drug delivery,” International Journal of Pharmaceutics, vol. 414, no. 1-2, pp. 218–224, 2011. View at Publisher · View at Google Scholar
  19. A. C. Sagle, H. Ju, B. D. Freeman, and M. M. Sharma, “PEG-based hydrogel membrane coatings,” Polymer, vol. 50, no. 3, pp. 756–766, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. L. Roam, H. Xu, P. K. Nguyen, and D. L. Elbert, “The formation of protein concentration gradients mediated by density differences of poly(ethylene glycol) microspheres,” Biomaterials, vol. 31, no. 33, pp. 8642–8650, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Li, S. Lu, Z. Wu, K. Tan, N. Minoura, and S. Kuga, “Structure and properties of silk fibroin-poly(vinyl alcohol) gel,” International Journal of Biological Macromolecules, vol. 30, no. 2, pp. 89–94, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. H. J. Jin and D. L. Kaplan, “Mechanism of silk processing in insects and spiders,” Nature, vol. 424, no. 6952, pp. 1057–1061, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Matsumoto, J. Chen, A. L. Collette et al., “Mechanisms of silk fibroin sol-gel transitions,” Journal of Physical Chemistry B, vol. 110, no. 43, pp. 21630–21638, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Li, W. Tao, S. Lu, and S. Kuga, “Compliant film of regenerated Antheraea pernyi silk fibroin by chemical crosslinking,” International Journal of Biological Macromolecules, vol. 32, no. 3–5, pp. 159–163, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Li, W. Tao, S. Kuga, and Y. Nishiyama, “Controlling molecular conformation of regenerated wild silk fibroin by aqueous ethanol treatment,” Polymers for Advanced Technologies, vol. 14, no. 10, pp. 694–698, 2003. View at Google Scholar · View at Scopus
  26. D. W. Jones, Introduction to the Spectroscopy of Biological Polymers, Academic Press, New York, NY, USA, 1976.
  27. W. K. Surewicz and H. H. Mantsch, “New insight into protein secondary structure from resolution-enhanced infrared spectra,” Biochimica et Biophysica Acta, vol. 952, no. 2, pp. 115–130, 1988. View at Google Scholar · View at Scopus
  28. X. Chen, Z. Shao, N. S. Marinkovic, L. M. Miller, P. Zhou, and M. R. Chance, “Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy,” Biophysical Chemistry, vol. 89, no. 1, pp. 25–34, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Monti, G. Freddi, S. Sampaio, M. Tsukada, and P. Taddei, “Structure modifications induced in silk fibroin by enzymatic treatments. A Raman study,” Journal of Molecular Structure, vol. 744–747, pp. 685–690, 2005. View at Publisher · View at Google Scholar · View at Scopus