Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2012, Article ID 872597, 5 pages
Research Article

Luminescence and Structure of ZnO Grown by Physical Vapor Deposition

1Departamento de Investigación en Física, Universidad de Sonora, 83000 Hermosillo, SON, Mexico
2División de Estudios de Posgrado, Facultad de Ingeniería Química (UMSNH), Ciudad Universitaria, Edificio V-1, Morelia, MICH, Mexico
3Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 2681, 22800 Ensenada, BC, Mexico

Received 15 August 2012; Revised 18 November 2012; Accepted 7 December 2012

Academic Editor: Markku Leskela

Copyright © 2012 R. García-Gutiérrez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Osinsky, J. W. Dong, M. Z. Kauser et al., “MgZnO/AIGaN heterostructure light-emitting diodes,” Applied Physics Letters, vol. 85, no. 19, pp. 4272–4274, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nature Materials, vol. 4, no. 6, pp. 455–459, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. W. I. Park, G. C. Yi, M. Kim, and S. J. Pennycook, “ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy,” Advanced Materials, vol. 14, pp. 1841–1843, 2002. View at Google Scholar
  4. T. C. Lin, C. Y. Wang, L. H. Chan, D. Q. Hsiao, and H. C. Shin, “Growth and characterization of a high-purity ZnO nanoneedles film prepared by microwave plasma deposition,” Journal of Vacuum Science & Technology B, vol. 24, p. 1318, 2006. View at Google Scholar
  5. B. Liu and H. C. Zeng, “Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm,” Journal of the American Chemical Society, vol. 125, pp. 4430–4431, 2003. View at Google Scholar
  6. B. Cheng and E. T. Samulski, “Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios,” Chemical Communications, pp. 986–987, 2004. View at Google Scholar
  7. Z. Dong, B. Han, S. Qian, and D. Chen, “Fluorescent properties of ZnO nanostructures fabricated by hydrothermal method,” Journal of Nanomaterials, vol. 2012, Article ID 251276, 5 pages, 2012. View at Publisher · View at Google Scholar
  8. Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties,” Applied Physics Letters, vol. 76, Article ID 2011, 2000. View at Google Scholar
  9. B. Cao, W. Cai, G. Duan, Y. Li, Q. Zhao, and D. Yu, “A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties,” Nanotechnology, vol. 16, no. 11, pp. 2567–2574, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Cao, X. Teng, S. H. Heo, Y. Li, S. O. Cho, and W. J. Cai, “Different ZnO nanostructures fabricated by a seed-layer assisted electrochemical route and their photoluminescence and field emission properties,” Physical Chemistry C, vol. 111, p. 2470, 2007. View at Google Scholar
  11. L. F. Xu, Y. Guo, Q. Liao, J. P. Zhang, and D. S. Xu, “Morphological control of ZnO nanostructures by electrodeposition,” The Journal of Physical Chemistry B, vol. 109, Article ID 13519, 2005. View at Google Scholar
  12. E. Gungor and T. Gungor, “Effect of the substrate movement on the optical properties of ZnO thin films deposited by ultrasonic spray pyrolysis,” Advances in Materials Science and Engineering, Article ID 594971, 7 pages, 2012. View at Publisher · View at Google Scholar
  13. M. H. Huang, S. Mao, H. Feick et al., “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, no. 5523, pp. 1897–1899, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science, vol. 291, no. 5510, pp. 1947–1949, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. H. T. Ng, J. Li, M. K. Smith et al., “Growth of epitaxial nanowires at the junctions of nanowalls,” Science, vol. 300, no. 5623, p. 1249, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. M. S. Wang, K. E. Lee, and S. H. Hahn, “Optical and photoluminescent properties of sol-gel Al-doped ZnO thin films,” Materials Letters, vol. 61, pp. 1118–1121, 2007. View at Google Scholar
  17. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” Journal of Applied Physics, vol. 79, no. 10, pp. 7983–7990, 1996. View at Google Scholar · View at Scopus
  18. X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Applied Physics Letters, vol. 78, Article ID 2285, 2001. View at Google Scholar
  19. A. Janotti and C. G. Van de Walle, “Oxygen vacancies in ZnO,” Applied Physics Letters, vol. 87, Article ID 122102, 2005. View at Google Scholar