Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2012, Article ID 969360, 6 pages
http://dx.doi.org/10.1155/2012/969360
Research Article

Fourier Transform Infrared Radiation Spectroscopy Applied for Wood Rot Decay and Mould Fungi Growth Detection

1SINTEF Building and Infrastructure, Department of Materials and Structures, 7465 Trondheim, Norway
2Department of Civil and Transport Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway

Received 14 March 2012; Revised 29 May 2012; Accepted 30 May 2012

Academic Editor: John W. Gillespie

Copyright © 2012 Bjørn Petter Jelle and Per Jostein Hovde. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Holme, S. Geving, and J. A. Jenssen, “Moisture and mould damage in norwegian houses,” in Proceedings of the 8th Symposium on Building Physics in the Nordic Countries, C. Rode, Ed., pp. 1213–1220, Danish Society of Engineers, Copenhagen, Denmark, June, 2008.
  2. J. Holme, L. Hägerhed-Engman, J. Mattsson, J. Sundell, and C.-G. Bornehag, “Culturable mold in indoor air and its association with moisture-related problems and asthma and allergy among Swedish children,” Indoor Air, vol. 20, no. 4, pp. 329–340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. EPA, “The inside story: a guide to indoor air quality,” United States Environmental Protection Agency, United States Consumer Product Safety Commission, Office of Radiation and Indoor Air, EPA Document 402-K-93-007, 1995.
  4. IEE, Guidelines for Good Indoor Air Quality in Office Premises, Institute of Environmental Epidemiology, Ministry of the Environment, Singapore, 1st edition, 1996.
  5. L. G. Harriman III and J. W. Lstiburek, The ASHRAE Guide for Buildings in Hot & Humid Climates, Refrigerating and Air-Conditioning Engineers, American Society of Heating, 2nd edition, 2009.
  6. J. Lstiburek, Investigating and Diagnosing Moisture Problems, vol. 108 of Building Science Digest, Building Science Press, 2006.
  7. The National Academies Press, Damp Indoor Spaces and Health, Institute of Medicine of the National Academies, The National Academies Press, Washington, DC, USA, 2004.
  8. WHO, WHO Guidelines for Indoor Air Quality: Dampness and Mould, World Health Organization, Copenhagen, Denmark, 2009.
  9. G. Fischer, S. Braun, R. Thissen, and W. Dott, “FT-IR spectroscopy as a tool for rapid identification and intra-species characterization of airborne filamentous fungi,” Journal of Microbiological Methods, vol. 64, no. 1, pp. 63–77, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Humar, B. Bučar, and F. Pohleven, “Brown-rot decay of copper-impregnated wood,” International Biodeterioration and Biodegradation, vol. 58, no. 1, pp. 9–14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Irudayaraj, H. Yang, and S. Sakhamuri, “Differentiation and detection of microorganisms using fourier transform infrared photoacoustic spectroscopy,” Journal of Molecular Structure, vol. 606, no. 1–3, pp. 181–188, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Kos, H. Lohninger, and R. Krska, “Fourier transform mid-infrared spectroscopy with attenuated total reflection (FT-IR/ATR) as a tool for the detection of Fusarium fungi on maize,” Vibrational Spectroscopy, vol. 29, no. 1-2, pp. 115–119, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Mohebby, “Attenuated total reflection infrared spectroscopy of white-rot decayed beech wood,” International Biodeterioration and Biodegradation, vol. 55, no. 4, pp. 247–251, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Naumann, M. Navarro-González, S. Peddireddi, U. Kües, and A. Polle, “Fourier transform infrared microscopy and imaging: detection of fungi in wood,” Fungal Genetics and Biology, vol. 42, no. 10, pp. 829–835, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. N. A. Ngo-Thi, C. Kirschner, and D. Naumann, “Characterization and identification of microorganisms by FT-IR microspectrometry,” Journal of Molecular Structure, vol. 661-662, pp. 371–380, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Orsini, D. Ami, A. M. Villa, G. Sala, M. G. Bellotti, and S. M. Doglia, “FT-IR microspectroscopy for microbiological studies,” Journal of Microbiological Methods, vol. 42, no. 1, pp. 17–27, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. K. K. Pandey and A. J. Pitman, “FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi,” International Biodeterioration and Biodegradation, vol. 52, no. 3, pp. 151–160, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. K. K. Pandey and A. J. Pitman, “Examination of the lignin content in a softwood and a hardwood decayed by a brown-rot fungus with the acetyl bromide method and Fourier transform infrared spectroscopy,” Journal of Polymer Science A, vol. 42, no. 10, pp. 2340–2346, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Wenning, H. Seiler, and S. Scherer, “Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts,” Applied and Environmental Microbiology, vol. 68, no. 10, pp. 4717–4721, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. B. P. Jelle, P. Rüther, and P. J. Hovde, “Investigations of accelerated climate aged wood substrates by Fourier transform infrared material characterization,” Advances in Materials Science and Engineering. In press.
  21. B. P. Jelle and T. N. Nilsen, “Comparison of accelerated climate ageing methods of polymer building materials by attenuated total reflectance Fourier transform infrared radiation spectroscopy,” Construction and Building Materials, vol. 25, no. 4, pp. 2122–2132, 2011. View at Publisher · View at Google Scholar · View at Scopus