Table 3: Mechanical studies on silica aerogel.


Experimental Arvidson and Scull [111]Young’s modulus, proportional limit, and yield strengthA concentric, overlapping-cylinder, capacitance extensometer is used to measure the strain
Gronauer et al. [112]Young’s modulus Sound velocity measurements
Woignier and Phalippou [113]Young’s modulus, fracture strength, and toughnessThree-point flexural and three-point bending
Gross et al. [114]Young’s modulus and Poisson’s ratioUltrasonic and static compression
Scherer et al. [115]Bulk modulusMercury porosimetry
Parmenter and Milstein [89]Hardness, compression, tension and shear on unreinforced and fiber-reinforced aerogelsVickers and Knoop hardness test, four-point bending, and a displacement-controlled Instron 1123 testing machine
Stark et al. [116]Young’s modulusAtomic force microscopy
Moner-Girona et al. [117]Hardness, Young’s modulus, and elastic parameterMicroindentation measurements using a Nanotest 550 Indenter
Martin et al. [118]Young’s ModulusUniaxial compression and acoustic velocity
Perin et al. [119]Elastic modulus and internal frictionIsostatic compression
Miner et al. [120]Young’s modulus and nonrecoverable strain for hygroscopic silica aerogelLow-range compression tester
Despetis et al. [121]Subcritical growth domain in hydrophilic silica aerogelDouble-cleavage-drilled-compression test (DCDC)
Takahashi et al. [122]Bending strengthThree-point bending

NumericalYang et al. [123]Creep behavior of ceramic fiber-reinforced silica aerogel Scanning electron microscope
Hasmy et al. [124]Wave-vector-dependent scattered intensity Cubic DLCA fractal structure model
Rahmani et al. [125]Densities of states and dynamic structure factors 3D cubic DLCA fractal structure model
Yang et al. [123]Creep behavior of ceramic fiber-reinforced silica aerogelPower-law creep model