Advances in Polymer Technology
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
Acceptance rate32%
Submission to final decision63 days
Acceptance to publication43 days
CiteScore1.550
Impact Factor1.539

Surface Functionalization of Graphene Oxide with Polymer Brushes for Improving Thermal Properties of the Polymer Matrix

Read the full article

 Journal profile

Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, polymer product design and considering the economic and environmental impacts of polymer technology.

 Editor spotlight

Advances in Polymer Technology maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors expert and up-to-date in the field of study

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Investigation of the Large-Scale Pallet by Recycled Polypropylene and the Sequential Valve Gate System during the Injection Molding

Plastic pallets are essential devices for the transport of industrial products within containers and can be made from recycled plastics to be more environmentally friendly. However, numerous thin reinforcing ribs are required to mold such large-size pallets, thereby requiring a large-scale injection-molding machine. Many filling gates can reduce the welding lines to enhance the structural strength of the pallet to achieve injection molding using a lower locking force machine. This study simulated the production of recycled polypropylene plastic pellets using a 3500-ton super-large injection-molding machine and the Moldex3D package to derive the flow analysis of the moldability. The PTC Creo software is used to construct plastic pallets (), filled by twelve gates using a baffle cooling system. During the four-stage filling of the sequential valve gate system, the flow front spreads from the central gate to the four corners of the pallet, decreasing the number of welding lines, with an average filling pressure of 19.23 MPa by a sequential valve gate scheme which is approximately 65% of the concurrent valve gate opening scheme. The maximum clamping force by this sequential valve gate opening scheme in the molding of plastic pallet is 874.6 tons, only half of the one by concurrent valve gate opening scheme. The average welding angle was 85.7° in the concurrent valve gate opening scheme, with smaller angles than that of the sequential gates controlled scheme. The maximum temperatures during the filling by the two schemes with the concurrent valve gates opened and the sequential gates controlled were 230.5 and 232.5°C, respectively. The sequential valve gate opening scheme’s warpages are smaller than the ones by the concurrent valve gate opening scheme. The warpages of the pallet by the sequential valve gate system are smaller than the ones by the concurrent valve gate system. A higher temperature of the cooling channel and a medium level of cooling time result in lower warpage of the pallet.

Research Article

The Effect of a Zinc-Containing Additive on the Properties of PVC Compounds

Polymeric materials that undergo degradation under the influence of biological media have attracted widespread attention in recent decades. This is due to the ability to eliminate the negative impact on the environment, gradually reducing the scale of plastic waste pollution. At the same time, it remains relevant to ensure the necessary performance characteristics of products for a certain period of use. An important direction in the field of biodegradable composite compositions is the development of nontoxic additives in order to ensure their safe interaction with biological media. In this regard, a method has been developed for the joint production of a new nontoxic plasticizer decyl phenoxyethyl adipate and a biocidal additive of zinc decyl adipate. The effect of the obtained additives on the biodegradation of PVC film samples under natural conditions was studied. The period of biocidal action of zinc compound formed in situ in an amount of 0.3% in the composition of PVC films using the developed plasticizer was determined.

Review Article

End-of-Life Options for (Bio)degradable Polymers in the Circular Economy

End-of-life options for plastics include recycling and energy recovery (incineration). Taking into account the polymeric waste, recycling is the intentional action that is aimed at reducing the amount of waste deposited in landfills by industrial use of this waste to obtain raw materials and energy. The incineration of waste leads to recovery of the energy only. Recycling methods divide on mechanical (reuse of waste as a full-valuable raw material for further processing), chemical (feedstock recycling), and organic (composting and anaerobic digestion). The type of recycling is selected in terms of the polymeric material, origin of the waste, possible toxicity of the waste, and its flammability. The (bio)degradable polymers show the suitability for every recycling methods. But recycling method should be used in such a form that it is economically justified in a given case. Organic recycling in a circular economy is considered to be the most appropriate technology for the disposal of compostable waste. It is addressed for plastics capable for industrial composting such as cellulose films, starch blends, and polyesters. The biological treatment of organic waste leads also to a decrease of landfills and thereby reducing methane emissions from them. If we add to their biodegradability the absence of toxicity, we have a biotechnological product of great industrial interest. The paper presents the overview on end-of-life options useful for the (bio)degradable polymers. The principles of the circular economy and its today development were also discussed.

Research Article

Application of r-GO-MMT Hybrid Nanofillers for Improving Strength and Flame Retardancy of Epoxy/Glass Fibre Composites

The application of nanomaterials as a strengthening agent in the fabrication of polymer nanocomposites has gained significant attention due to distinctive properties which can be utilised in structural applications. In this study, reduced graphene oxide (r-GO) and montmorillonite (MMT) nanoclay were used as filler materials to fabricate hybrid epoxy-based nanocomposites. The synergistic effect of nanomaterials on flammability and mechanical behaviour of nanocomposites were studied. Results revealed that the addition of nanofiller showcases 97% and 44.5% improvement in tensile and flexural strength. However, an increment in the percentage of filler material over 0.3% exhibits a decremental mechanical property trend. Likewise, the addition of nanofiller increases the nonignition timing of the glass-fibre-reinforced epoxy composites. Fracture surface morphology displays the occurrence of the ductile fracture mechanism owing to the presence of hybrid fillers.

Review Article

Latest Updates on the Advancement of Polymer-Based Biomicroelectromechanical Systems for Animal Cell Studies

Biological sciences have reached the fundamental unit of life: the cell. Ever-growing field of Biological Microelectromechanical Systems (BioMEMSs) is providing new frontiers in both fundamental cell research and various practical applications in cell-related studies. Among various functions of BioMEMS devices, some of the most fundamental processes that can be carried out in such platforms include cell sorting, cell separation, cell isolation or trapping, cell pairing, cell-cell communication, cell differentiation, cell identification, and cell culture. In this article, we review each mentioned application in great details highlighting the latest advancements in fabrication strategy, mechanism of operation, and application of these tools. Moreover, the review article covers the shortcomings of each specific application which can open windows of opportunity for improvement of these devices.

Research Article

Investigation of the Impact of Two Types of Epoxidized Vietnam Rubber Seed Oils on the Properties of Polylactic Acid

To minimize the brittleness of polylactic acid (PLA), the epoxidized rubber seed oils (ERO) or epoxidized ester rubber seed oils (EERO) are blended with PLA. The mechanical properties of ERO bioblend are higher than that of EERO bioblend and significantly improved compared to that of the PLA sample. Elongation at break is increased by 9.1 times, and impact strength and tensile toughness improved by 139% and 1370%, respectively. The morphological study showed the microdroplets of epoxidized oils distributed in the ERO bioblend are much smaller than those in the EERO bioblend. This means that the ERO is better compatible with PLA, and both ERO and EERO are partially miscible with PLA. This compatibility is confirmed by the decrease in the glass transition temperature, , from 65.7 to 60.5°C. The TGA analysis shows a sharp increase in an initial decomposition temperature (from 261.8 to 311.9°C) meaning an improvement in thermal properties. The NMR analysis proves that the epoxidized vegetable oils are linked to PLA chains, so both the melt flow index and an acid value of ERO or EERO bioblend decrease while the thermal stability is improved. The NMR peak area of some signals shows that the ERO is more attached to PLA, proving better compatibility of ERO with PLA, resulting in higher mechanical properties of ERO bioblend. The plasticizing effect of plasticizers is not dependent on the oxygen-oxirane content of the epoxidized oil but is strongly influenced by the acid value. Overall results show that both ERO and EERO can be used as a biodegradable, renewable plasticizer to replace petroleum-based plasticizers for PLA. In addition, the successful modification of PLA by using ERO or EERO promotes the use of this polymer as a potential material for researchers working on PLA applications.

Advances in Polymer Technology
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
Acceptance rate32%
Submission to final decision63 days
Acceptance to publication43 days
CiteScore1.550
Impact Factor1.539
 Submit