Research Article  Open Access
Jianhui Wang, Chunliang Zhang, Houyao Zhu, Xiaofang Huang, Li Zhang, "RBF Nonsmooth Control Method for Vibration of Building Structure with Actuator Failure", Complexity, vol. 2017, Article ID 2513815, 7 pages, 2017. https://doi.org/10.1155/2017/2513815
RBF Nonsmooth Control Method for Vibration of Building Structure with Actuator Failure
Abstract
In order to accommodate the actuator failure, the finitetime stable nonsmooth control method with RBF neural network is used to suppress the structural vibration. The traditional designed control methods neglect influence of actuator failure in structural vibration. By Lyapunov stable theory, the designed control method is demonstrated to suppress the building structural vibration with actuator failure. Finally, there are some examples to numerically simulate the threelayer building structure which is affected by El Centro seismic wave. Control effect of nonsmooth control is compared with no control and LQR control. The simulation results demonstrate that the designed control method is great for vibration of building structure with actuator failure and great antiseismic effect.
1. Introduction
How to reduce the severe and persistent vibration for structure under the earthquake vibration and wind resistance is a hot topic. In the last few decades, the structural vibration control was proved as an active and effective measure to suppress vibration. And international and domestic academics have brought up many kinds of effective control algorithm such as LQR (Linear Quadratic Regulator), LQG (Linear Quadratic Gaussian), ILC (Iterative Learning Control), and pole placement [1–5]. The aforementioned results do not consider the case of actuator failure. However, actuator failure is inevitable in the real project.
Thus, more and more researchers make contributions to control strategy in the case of actuator failure. And many effective ways have some development in respect of compensation of actuator failure. The study of actuator failure is started with dealing with linear system fault [6, 7]. Nevertheless, the control of actuator failure is very limited in the application of building structure.
In addition, the convergence of control system is an important index [8]. However, many linear control methods are to make system Lyapunov stable. What is more, they belong to asymptotic stable research field that motion track is converged to the system’s equilibrium point in the case of time that tends to infinity. In the view of making control system of structural vibration rapidly stabilize, it is necessary to study control methods making closedloop system converge in finite time.
With the study and development of Lyapunov stable theory [9] and theorem of homogeneity, continuous nonsmooth control has made certain breakthrough [8–10]. Nonsmooth control has been widely applied [11–15] such as attitude control of spacecraft [12], highprecision guidance laws [14], and position control of permanent magnet synchronous motors [15]. Nevertheless, this control method is not applied on the building structure. At the same time, it cannot approximate well for uncertain part. The problem causes difficulty and challenge for design and analysis of control method. By learning literature [16–25], it is not hard to find out that neural network has wide prospect. And the neural network has great approximation effect for unknown model. Meanwhile, RBF neural network has great generalization and approximates any nonlinear function at random.
The paper carries out mathematical modeling and analysis for a building structure. According to the RBF neural network, the seismic wave is made by autoadaptable approximation. Then, according to finitetime stable theory and analysis of actuator failure, the finitetime stable nonsmooth algorithm is designed for the problem of structural vibration. Finally, the control system is under seismic wave called El Centro. And numerical analysis of the strong nonlinear model is studied. The control effects of nonsmooth control and LQR control are analyzed contrastively.
The main contributions of this dissertation are as follows: The impact of uncertain actuator failures on building structure vibration is considered. Meanwhile, the actuator failure is compensated with RBF neural network. Building structure vibration is suppressed in a fast speed by applying the method of finitetime nonsmooth vibration control, which prevents building structure from vibration in a long time.
2. The Modeling and Analysis of Building Structure
Interlaminar shear model is used. The layers’ building structure is simplified into building structure degrees of freedom. Effected under onedimensional horizontal earthquake, the equation of motion is as follows [1]:
In this equation, is displacement vector of the structure relative to the ground, where is displacement of the building structural th floor relative to the ground. is mass matrix. is damping matrix. is stiffness matrix. is transform matrix of the ground seismic acceleration where is the unit column of . is the ground seismic acceleration. is a matrix denoting the location of actuators. is the control input.
We define a statespace vector , where and . Space state equations of (1) can be formulated as [26]where
According to the rank criterion, the system (see (2)) is controllable. Hence, structural vibration can be suppressed effectively via designing control variable.
According to the finitetime stability theory, considering the motion equation of the structure, an actuator has been installed in each layer. is full rank matrix called invertible matrix. We use variable and choose
Equation (4) is plugged into (2) as
The system can be decomposed into mutual independent subsystems as
The th actuator failure mathematic model can be modeled aswhere and and are uncertain constants. When the constants and , this indicates that the th actuator works normally (i.e., the actuators work in the failurefree case). Thus, the following 2 patterns of failures are considered.(1): this case indicates that the systems lose partial performance during the operation, which is known as Partial Loss of Effectiveness (PLOE); that is, .(2): this case implies that actuator output is no longer affected by . indicates Total Loss of Effectiveness (TLOE); that is, .
According to the above analysis, system mathematical model is rewritten as follows:
3. Design of Control Algorithm
In the failure of the period, the controller is designed as , , and for any th subsystem, where is designed as the finitetime stable nonsmooth control law [27].where , , , , and .
On the basis of the above controller design, in order to guarantee the system stability, we must design to meet the following formula:
However, the failure model parameters of the actuator are unknown so that is defined as the estimated value for and is defined.
The above analysis includes unknown seismic wave disturbance, so subsequent analysis faces difficulty and challenge. Thus, the paper uses RBF neural network to approximate .
RBF network has characteristics of universal approximation. We use theory that uses RBF network to approximate . The network algorithm is as follows:where is an input of network, is the th joint of network’s hidden layer, is the number of network’s hidden layers, , is the desirable permission of network, is an approximation error of network, and .
The input of network is . Then the output of network is as follows:
According to RBF theory, we make the following definitions: , , and . It is proved accordingly that the nonsmooth control law can make system globally finitetime stable. We can prove the following: the th subsystem of Lyapunov function is built aswhere is definite matrix. ; .
Setting and , then
Obviously, is half negative. Therefore, the system is stable. According to the invariance principle, subsystem is asymptotically stable globally in the equilibrium point.
According to the theory of finitetime stability [19], when and , the subsystem is homogeneous system and the system’s degree of homogeneity is . In other words, the th subsystem , is globally finitetime stable. Similarly, other subsystems are globally finitetime stable and the system (see (8)) is globally finitetime stable after combination.
4. Analysis of Numerical Simulation
The effectiveness of the finitetime stable nonsmooth control algorithm based on the building structural vibration of actuator failure is verified. A threelayer building structure is simulated by three control methods including nonsmooth control, LQR control, and no control. Each floor is equipped with actuators to provide control force resisting earthquake action for structure. And the system subjected to the earthquake wave called El Centro of external disturbance signal and 15% of the actuator failure after 3 seconds is assumed. Maximum of earthquake acceleration is . The parameters of finitetime stable nonsmooth control are , , , and .
The mass matrix, damping matrix, stiffness matrix, and position matrix of example 1 are as follows:
In example 1, the contrast simulation curves of the displacement, velocity, acceleration response, and the control force for each floor are shown in Figures 1–4 under no control, LQR control, and nonsmooth control.
As is shown in Figures 1–4, nonsmooth control algorithm has been more effective than LQR control algorithm with actuator failure. The required control forces of two control methods have a little difference. However, nonsmooth control algorithm has been improved more than LQR control algorithm. In order to further analyze the effect of nonsmooth control, LQR control, and no control, the maximum displacement and maximum acceleration of each layer in the above simulation results are counted. The results are shown in Tables 1 and 2.


As is shown in Tables 1 and 2, compared with no control, the maximum displacement of the first, second, and third floor decreased by 85%, 88%, and 91% in LQR control. The maximum acceleration is also reduced by 23%, 8%, and 9%. Nevertheless, compared with LQR control, the maximum displacement of the first, second, and third floor is decreased by 74%, 77%, and 77% in nonsmooth control, respectively. And the maximum acceleration values are all reduced by 93%.
The model parameters of example 2 are as follows:
In example 2, the contrast simulation curves of the displacement, velocity, acceleration response, and the control force for each floor are shown in Figures 5–8 under no control, LQR control, and nonsmooth control.
As is shown in Figures 5–8, nonsmooth control algorithm is also more effective than no control and LQR control algorithms. At the same time, the maximum displacement and acceleration of each layer from the results of the second example are counted. The results are shown in Tables 3 and 4.


As is shown in Tables 3 and 4, compared with no control, the nonsmooth control declined 96%, 98%, and 98% in the maximum displacement of the first, second, and third floor. The maximum acceleration values are all reduced by 94%. And, compared with LQR control, the maximum displacement of the first, second, and third floor is decreased by 18%, 24%, and 27% in nonsmooth control, respectively. At the same time, the maximum acceleration values are all reduced by 85%.
According to the above two examples, with the case of external distraction and actuator failure, two control methods can give good control force for displacement. However, with nonsmooth control, structural vibration is suppressed effectively better than LQR control. And interstory displacement is controlled within a small range. The displacement, velocity, and acceleration tend to a small range of vibration better and to be stable lastly. Thus, nonsmooth control algorithm can better protect the building structure from damage of the earthquake compared with LQR control algorithm.
5. Conclusion
Aiming at the problem restraining nonlinear vibration of the building structure, a structure is mathematically modeled and analyzed. Then, according to the theory of finitetime stability and the analysis of actuator failure, nonsmooth control with RBF neural network is designed for the problem of structural vibration. And the stable analysis of the system is demonstrated. Finally, nonsmooth control, LQR control, and no control are compared by analysis. The control system is affected by seismic wave called El Centro. At the same time, the numerical simulation of the model with strong nonlinearity is studied. The above works verified the feasibility and effectiveness of nonsmooth control algorithm. In this paper, uncertainty and external perturbation estimation of the parameters are taken into account in the simulation. On this basis, further analyses of the systematic robustness and antijamming have theoretical and practical significance, which are worth studying further.
Conflicts of Interest
The authors declare that there are no conflicts of interest regarding the publication of this paper.
Acknowledgments
This work is supported by National Natural Science Foundation (NNSF) of China under Grant no. 51478132, Guangzhou City College Scientific Research Project under Grant no. 1201630173, and Science and Technology Planning Project of Guangdong under Grant no. 2016B090912007.
References
 F. Zhou, Seismic control in engineering structures, Seismological Press, Beijing, China, 1997.
 K. Zhou, T. Wang, and J. Song, An Introduction to Signal Detection and Estimation, Chapter 4, SpringerVerlag, New York, NY, USA, 1985.
 J. Ou, Structural vibration controlactive, semi active and intelligent control, Science Press, Beijing, China, 2003.
 J. Wang, W. Yang, and Y. Qian, “Design of controller for torsion vibration device based on pole assignment method,” Experimental Technology and Management, vol. 31, no. 7, pp. 86–89, 2014. View at: Google Scholar
 S. Tong and H. Tang, “Iterative learning instantaneous optimal control of discrete systems optimization of actuator positions,” Applied Mathematics and Mechanics, vol. 37, no. 2, pp. 160–172, 2016. View at: Google Scholar
 G. Tao, S. M. Joshi, and X. Ma, “Adaptive state feedback and tracking control of systems with actuator failures,” Institute of Electrical and Electronics Engineers Transactions on Automatic Control, vol. 46, no. 1, pp. 78–95, 2001. View at: Publisher Site  Google Scholar  MathSciNet
 X. Tang, G. Tao, and S. M. Joshi, “Adaptive output feedback actuator failure compensation for a class of nonlinear systems,” International Journal of Adaptive Control and Signal Processing, vol. 19, no. 6, pp. 419–444, 2005. View at: Publisher Site  Google Scholar  MathSciNet
 W. Gao, Foundation of variable structure control theory, China Science and Technology Press, Beijing, China, 1990.
 L. Rosier, “Homogeneous Lyapunov function for homogeneous continuous vector fields,” Systems and Control Letters, vol. 19, no. 6, pp. 467–473, 1992. View at: Publisher Site  Google Scholar  MathSciNet
 S. P. Bhat and D. S. Bernstein, “Finitetime stability of homogeneous systems,” in Proceedings of the American Control Conference, pp. 25132514, Albuquerque, NM, USA, June 1997. View at: Google Scholar
 H. Hermes, “Homogeneous coordinates and continuous asymptotically stabilizing feedback controls,” in Journal of Differential Equations, vol. 127 of Lecture Notes in Pure and Appl. Math., pp. 249–260, Dekker, New York, NY, USA, 1991. View at: Google Scholar  MathSciNet
 K.M. Ma, “Design of continuous nonsmooth attitude control laws for spacecraft,” The Journal of the Astronautical Sciences, vol. 33, no. 6, pp. 713–719, 2012. View at: Publisher Site  Google Scholar
 J. Wang, Q. Wang, and L. Zhang, “Design of Nonsmooth Synchronous Control Method for Stage Lifting Machinery,” in Proceedings of the 3rd International Conference on Information Science and Control Engineering (ICISCE '16), pp. 943–947, China, July 2016. View at: Publisher Site  Google Scholar
 K.M. Ma, “Nonsmooth design and implementation of highprecision guidance laws,” Journal of Ballistics, vol. 25, no. 2, pp. 1–5, 2013. View at: Google Scholar
 J. Wang, Q. Wang, and K. Ma, “Nonsmooth controller design for permanent magnet synchronous motors,” Computer Simulation, vol. 33, no. 3, pp. 227–230, 2016. View at: Google Scholar
 C. Yang, X. Wang, L. Cheng, and H. Ma, “Neurallearningbased telerobot control with guaranteed performance,” IEEE Transactions on Cybernetics, Article ID 2573837, pp. 1–12, 2016. View at: Publisher Site  Google Scholar
 C. Yang, Z. Li, and J. Li, “Trajectory planning and optimized adaptive control for a class of wheeled inverted pendulum vehicle models,” IEEE Transactions on Cybernetics, vol. 43, no. 1, pp. 24–36, 2013. View at: Publisher Site  Google Scholar
 H. Xiao, Z. Li, C. Yang et al., “Robust stabilization of a wheeled mobile robot using model predictive control based on neurodynamics optimization,” IEEE Transactions on Industrial Electronics, vol. 64, no. 1, pp. 505–516, 2017. View at: Publisher Site  Google Scholar
 C. Yang, X. Wang, and Z. Li, “Teleoperation control based on combination of wave variable and neural networks,” Transactions on Systems Man and Cybernetics Systems, vol. 99, pp. 1–12, 2017. View at: Google Scholar
 C. Yang, J. Luo, and Y. Pan, “Personalized variable gain control with tremor attenuation for robot teleoperation,” IEEE Transactions on Systems Man and Cybernetics Systems, pp. 1–12, 2017. View at: Google Scholar
 Z. Zhao, X. Wang, C. Zhang, Z. Liu, and J. Yang, “Neural network based boundary control of a vibrating string system with input deadzone,” Neurocomputing, 2017. View at: Publisher Site  Google Scholar
 F. Wang, B. Chen, C. Lin et al., “Adaptive neural network finitetime output feedback control of quantized nonlinear systems,” IEEE Transactions on Cybernetics, 2017. View at: Publisher Site  Google Scholar
 J. H. Wang, Z. Liu, C. Chen, and Y. Zhang, “Fuzzy adaptive compensation control of uncertain stochastic nonlinear systems with actuator failures and input hysteresis,” IEEE Transactions on Cybernetics, 2017. View at: Publisher Site  Google Scholar
 H. Cheng and T. Zhang, “A new predatorprey model with a profitless delay of digestion and impulsive perturbation on the prey,” Applied Mathematics and Computation, vol. 217, no. 22, pp. 9198–9208, 2011. View at: Publisher Site  Google Scholar  MathSciNet
 X. Dong, Z. Bai, and S. Zhang, “Positive solutions to boundary value problems of pLaplacian with fractional derivative,” Boundary Value Problems, 2017. View at: Publisher Site  Google Scholar
 Z. Bai, S. Zhang, S. Sun, and C. Yin, “Monotone iterative method for fractional differential equations,” Electronic Journal of Differential Equations, vol. 2016, article 6, 2016. View at: Google Scholar
 K.M. Ma, “Design of nonsmooth guidance law with terminal lineofsight constraint,” Journal of Ballistics, vol. 23, no. 2, pp. 14–18, 2011. View at: Google Scholar
Copyright
Copyright © 2017 Jianhui Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.