Table of Contents Author Guidelines Submit a Manuscript
Cardiology Research and Practice
Volume 2011 (2011), Article ID 747861, 16 pages
http://dx.doi.org/10.4061/2011/747861
Review Article

Metabolic Syndrome, Chronic Kidney Disease, and Cardiovascular Disease: A Dynamic and Life-Threatening Triad

Department of Nephrology and Renal Transplantation, Centro Hospitalar Lisboa Norte, EPE, Hospital de Santa Maria, Avenida Professor Egas Moniz, 1649-035 Lisboa, Portugal

Received 7 October 2010; Revised 6 December 2010; Accepted 24 December 2010

Academic Editor: Ken Ichi Aihara

Copyright © 2011 Mário Raimundo and José António Lopes. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. E. Manson, P. J. Skerrett, P. Greenland, and T. B. VanItallie, “The escalating pandemics of obesity and sedentary lifestyle: a call to action for clinicians,” Archives of Internal Medicine, vol. 164, no. 3, pp. 249–258, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. R. Weiss, J. Dziura, T. S. Burgert et al., “Obesity and the metabolic syndrome in children and adolescents,” New England Journal of Medicine, vol. 350, no. 23, pp. 2362–2374, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. G. M. Reaven, “Banting lecture 1988. Role of insulin resistance in human disease,” Diabetes, vol. 37, no. 12, pp. 1595–1607, 1988. View at Google Scholar · View at Scopus
  4. R. A. DeFronzo and E. Ferrannini, “Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease,” Diabetes Care, vol. 14, no. 3, pp. 173–194, 1991. View at Google Scholar
  5. R. S. Lindsay and B. V. Howard, “Cardiovascular risk associated with the metabolic syndrome,” Current Diabetes Reports, vol. 4, no. 1, pp. 63–68, 2004. View at Google Scholar · View at Scopus
  6. K. K. Koh, S. H. Han, and M. J. Quon, “Inflammatory markers and the metabolic syndrome: insights from therapeutic interventions,” Journal of the American College of Cardiology, vol. 46, no. 11, pp. 1978–1985, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. K. G. M. M. Alberti and P. Z. Zimmet, “Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation,” Diabetic Medicine, vol. 15, no. 7, pp. 539–553, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Balkau and M. A. Charles, “Comment on the provisional report from the WHO consultation,” Diabetic Medicine, vol. 16, no. 5, pp. 442–443, 1999. View at Publisher · View at Google Scholar
  9. J. I. Cleeman, “Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III),” Journal of the American Medical Association, vol. 285, no. 19, pp. 2486–2497, 2001. View at Google Scholar · View at Scopus
  10. S. M. Grundy, J. I. Cleeman, S. R. Daniels et al., “Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement,” Circulation, vol. 112, no. 17, pp. 2735–2752, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. K. G. M. M. Alberti, P. Zimmet, and J. Shaw, “The metabolic syndrome—a new worldwide definition,” Lancet, vol. 366, no. 9491, pp. 1059–1062, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. E. S. Ford, W. H. Giles, and W. H. Dietz, “Prevalence of the metabolic syndrome among US adults: findings from the Third National Health and Nutrition Examination Survey,” Journal of the American Medical Association, vol. 287, no. 3, pp. 356–359, 2002. View at Google Scholar · View at Scopus
  13. E. S. Ford, “Prevalence of the metabolic syndrome defined by the international diabetes federation among adults in the U.S,” Diabetes Care, vol. 28, no. 11, pp. 2745–2749, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. E. S. Ford, W. H. Giles, and A. H. Mokdad, “Increasing prevalence of the metabolic syndrome among U.S. adults,” Diabetes Care, vol. 27, no. 10, pp. 2444–2449, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. P. W. F. Wilson, R. B. D'Agostino, H. Parise, L. Sullivan, and J. B. Meigs, “Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus,” Circulation, vol. 112, no. 20, pp. 3066–3072, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. S. D. de Ferranti, K. Gauvreau, D. S. Ludwig, E. J. Neufeld, J. W. Newburger, and N. Rifai, “Prevalence of the metabolic syndrome in American adolescents: findings from the Third National Health and Nutrition Examination Survey,” Circulation, vol. 110, no. 16, pp. 2494–2497, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. R. L. Hanson, G. Imperatore, P. H. Bennett, and W. C. Knowler, “Components of the "metabolic syndrome" and incidence of type 2 diabetes,” Diabetes, vol. 51, no. 10, pp. 3120–3127, 2002. View at Google Scholar · View at Scopus
  18. H. E. Resnick, K. Jones, G. Ruotolo et al., “Insulin resistance, the metabolic syndrome, and risk of incident cardiovascular disease in nondiabetic American Indians: the Strong Heart Study,” Diabetes Care, vol. 26, no. 3, pp. 861–867, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. B. E. K. Klein, R. Klein, and K. E. Lee, “Components of the metabolic syndrome and risk of cardiovascular disease and diabetes in Beaver Dam,” Diabetes Care, vol. 25, no. 10, pp. 1790–1794, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Sattar, A. Gaw, O. Scherbakova et al., “Metabolic syndrome with and without C-reactive protein as a predictor of coronary heart disease and diabetes in the West of Scotland Coronary Prevention Study,” Circulation, vol. 108, no. 4, pp. 414–419, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. N. Sattar, A. McConnachie, A. G. Shaper et al., “Can metabolic syndrome usefully predict cardiovascular disease and diabetes? Outcome data from two prospective studies,” Lancet, vol. 371, no. 9628, pp. 1927–1935, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. E. S. Ford, C. Li, and N. Sattar, “Metabolic syndrome and incident diabetes: current state of the evidence,” Diabetes Care, vol. 31, no. 9, pp. 1898–1904, 2008. View at Publisher · View at Google Scholar · View at PubMed
  23. E. S. Ford, “Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence,” Diabetes Care, vol. 28, no. 7, pp. 1769–1778, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Galassi, K. Reynolds, and J. He, “Metabolic syndrome and risk of cardiovascular disease: a meta-analysis,” American Journal of Medicine, vol. 119, no. 10, pp. 812–819, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. A. S. Gami, B. J. Witt, D. E. Howard et al., “Metabolic syndrome and risk of incident cardiovascular events and death. A systematic review and meta-analysis of longitudinal studies,” Journal of the American College of Cardiology, vol. 49, no. 4, pp. 403–414, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. J. B. Meigs, P. W. F. Wilson, C. S. Fox et al., “Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 8, pp. 2906–2912, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. National Kidney Foundation, “K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification,” American Journal of Kidney Diseases, vol. 39, pp. S1–S246, 2002. View at Google Scholar
  28. B. F. Culleton, M. G. Larson, P. W. F. Wilson, J. C. Evans, P. S. Parfrey, and D. Levy, “Cardiovascular disease and mortality in a community-based cohort with mild renal insufficiency,” Kidney International, vol. 56, no. 6, pp. 2214–2219, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. R. N. Foley, P. S. Parfrey, and M. J. Sarnak, “Clinical epidemiology of cardiovascular disease in chronic renal disease,” American Journal of Kidney Diseases, vol. 32, no. 5, pp. S112–S119, 1998. View at Google Scholar · View at Scopus
  30. P. Muntner, J. He, L. Hamm, C. Loria, and P. K. Whelton, “Renal insufficiency and subsequent death resulting from cardiovascular disease in the United States,” Journal of the American Society of Nephrology, vol. 13, no. 3, pp. 745–753, 2002. View at Google Scholar · View at Scopus
  31. H. C. Gerstein, J. F. E. Mann, Q. Yi et al., “Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals,” Journal of the American Medical Association, vol. 286, no. 4, pp. 421–426, 2001. View at Google Scholar
  32. A. M. El Nahas and A. K. Bello, “Chronic kidney disease: the global challenge,” Lancet, vol. 365, no. 9456, pp. 331–340, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. J. Coresh, B. C. Astor, T. Greene, G. Eknoyan, and A. S. Levey, “Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey,” American Journal of Kidney Diseases, vol. 41, no. 1, pp. 1–12, 2003. View at Google Scholar · View at Scopus
  34. R. N. Foley, A. M. Murray, S. Li et al., “Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States medicare population, 1998 to 1999,” Journal of the American Society of Nephrology, vol. 16, no. 2, pp. 489–495, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. J. F. E. Mann, H. C. Gerstein, J. Poque, J. Bosch, and S. Yusuf, “Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE randomized trial,” Annals of Internal Medicine, vol. 134, no. 8, pp. 629–636, 2001. View at Google Scholar · View at Scopus
  36. A. S. Go, G. M. Chertow, D. Fan, C. E. McCulloch, and C. Y. Hsu, “Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization,” New England Journal of Medicine, vol. 351, no. 13, pp. 1296–1370, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. R. Vanholder, Z. Massy, A. Argiles et al., “Chronic kidney disease as cause of cardiovascular morbidity and mortality,” Nephrology Dialysis Transplantation, vol. 20, pp. 1048–1056, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. W. van Biesen, D. de Bacquer, F. Verbeke, J. Delanghe, N. Lameire, and R. Vanholder, “The glomerular filtration rate in an apparently healthy population and its relation with cardiovascular mortality during 10 years,” European Heart Journal, vol. 28, no. 4, pp. 478–483, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. J. Fort, “Chronic renal failure: a cardiovascular risk factor,” Kidney International, vol. 68, no. 99, pp. S25–S29, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. U.S. Renal Data System, “Atlas of end-stage renal disease in the United States,” USRDS 2002 Annual Data Report, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2002, Bethesda, Md, USA, 2002. View at Google Scholar
  41. M. J. Sarnak, B. E. Coronado, T. Greene et al., “Cardiovascular disease risk factors in chronic renal insufficiency,” Clinical Nephrology, vol. 57, no. 5, pp. 327–335, 2002. View at Google Scholar · View at Scopus
  42. P. Muntner, J. Coresh, J. C. Smith, J. Eckfeldt, and M. J. Klag, “Plasma lipids and risk of developing renal dysfunction: the atherosclerosis risk in communities study,” Kidney International, vol. 58, no. 1, pp. 293–301, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. J. Bergström, “Inflammation, malnutrition, cardiovascular disease and mortality in end-stage renal disease,” Polskie Archiwum Medycyny Wewnetrznej, vol. 104, no. 4, pp. 641–643, 2000. View at Google Scholar · View at Scopus
  44. R. J. Middleton, P. S. Parfrey, and R. N. Foley, “Left ventricular hypertrophy in the renal patient,” Journal of the American Society of Nephrology, vol. 12, no. 5, pp. 1079–1084, 2001. View at Google Scholar · View at Scopus
  45. R. N. Foley, P. S. Parfrey, and M. J. Sarnak, “Epidemiology of cardiovascular disease in chronic renal disease,” Journal of the American Society of Nephrology, vol. 9, no. 12, pp. S16–S23, 1998. View at Google Scholar · View at Scopus
  46. R. N. Foley and P. S. Parfrey, “Cardiac disease in chronic uremia: clinical outcome and risk factors,” Advances in Renal Replacement Therapy, vol. 4, no. 3, pp. 234–248, 1997. View at Google Scholar · View at Scopus
  47. J. D. Harnett, R. N. Foley, G. M. Kent, P. E. Barre, D. Murray, and P. S. Parfrey, “Congestive heart failure in dialysis patients: prevalence, incidence, prognosis and risk factors,” Kidney International, vol. 47, no. 3, pp. 884–890, 1995. View at Google Scholar · View at Scopus
  48. P. S. Parfrey, R. N. Foley, J. D. Harnett, G. M. Kent, D. Murray, and P. E. Barre, “Outcome and risk factors of ischemic heart disease in chronic uremia,” Kidney International, vol. 49, no. 5, pp. 1428–1434, 1996. View at Google Scholar · View at Scopus
  49. D. L. Dries, D. V. Exner, M. J. Domanski, B. Greenberg, and L. W. Stevenson, “The prognostic implications of renal insufficiency in asymptomatic and symptomatic patients with left ventricular systolic dysfunction,” Journal of the American College of Cardiology, vol. 35, no. 3, pp. 681–689, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Al Suwaidi, D. N. Reddan, K. Williams et al., “Prognostic implications of abnormalities in renal function in patients with acute coronary syndromes,” Circulation, vol. 106, no. 8, pp. 974–980, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. M. G. Shlipak, L. F. Fried, C. Crump et al., “Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency,” Circulation, vol. 107, no. 1, pp. 87–92, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Stenvinkel, O. Heimbürger, F. Paultre et al., “Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure,” Kidney International, vol. 55, no. 5, pp. 1899–1911, 1999. View at Publisher · View at Google Scholar · View at PubMed
  53. A. B. Irish, “Plasminogen activator inhibitor-1 activity in chronic renal disease and dialysis,” Metabolism, vol. 46, no. 1, pp. 36–40, 1997. View at Publisher · View at Google Scholar
  54. F. Kronenberg, “Homocysteine, lipoprotein(a) and fibrinogen: metabolic risk factors for cardiovascular complications of chronic renal disease,” Current Opinion in Nephrology and Hypertension, vol. 7, no. 3, pp. 271–278, 1998. View at Google Scholar
  55. A. Festa, R. D'Agostino, G. Howard, L. Mykkänen, R. P. Tracy, and S. M. Haffner, “Chronic subclinical inflammation as part of the insulin resistance syndrome: the insulin resistance atherosclerosis study (IRAS),” Circulation, vol. 102, no. 1, pp. 42–47, 2000. View at Google Scholar
  56. J. C. Pickup, M. B. Mattock, G. D. Chusney, and D. Burt, “NIDDM as a disease of the innate immune system: association of acute- phase reactants and interleukin-6 with metabolic syndrome X,” Diabetologia, vol. 40, no. 11, pp. 1286–1292, 1997. View at Publisher · View at Google Scholar
  57. V. Panichi, M. Migliori, S. de Pietro et al., “C-reactive protein as a marker of chronic inflammation in uremic patients,” Blood Purification, vol. 18, no. 3, pp. 183–190, 2000. View at Google Scholar
  58. L. Mykkänen, D. J. Zaccaro, D. H. O'Leary, G. Howard, D. C. Robbins, and S. M. Haffner, “Microalbuminuria and carotid artery intima-media thickness in nondiabetic and NIDDM subjects: the insulin resistance atheroselerosis study (IRAS),” Stroke, vol. 28, no. 9, pp. 1710–1716, 1997. View at Google Scholar
  59. W. G. Goodman, J. Goldin, B. D. Kuizon et al., “Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis,” New England Journal of Medicine, vol. 342, no. 20, pp. 1478–1483, 2000. View at Publisher · View at Google Scholar · View at PubMed
  60. R. Zatz, B. R. Dunn, and T. W. Meyer, “Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension,” Journal of Clinical Investigation, vol. 77, no. 6, pp. 1925–1930, 1986. View at Google Scholar
  61. M. E. Cooper, “Pathogenesis, prevention, and treatment of diabetic nephropathy,” Lancet, vol. 352, no. 9123, pp. 213–219, 1998. View at Publisher · View at Google Scholar
  62. P. K. Whelton, T. V. Perneger, J. He, and M. J. Klag, “The role of blood pressure as a risk factor for renal disease: a review of the epidemiologic evidence,” Journal of Human Hypertension, vol. 10, no. 10, pp. 683–689, 1996. View at Google Scholar
  63. K. Iseki, Y. Ikemiya, K. Kinjo, T. Inoue, C. Iseki, and S. Takishita, “Body mass index and the risk of development of end-stage renal disease in a screened cohort,” Kidney International, vol. 65, no. 5, pp. 1870–1876, 2004. View at Publisher · View at Google Scholar · View at PubMed
  64. J. D. Kopple, T. Greene, W. C. Chumlea et al., “Relationship between nutritional status and the glomerular filtration rate: results from the MDRD study,” Kidney International, vol. 57, no. 4, pp. 1688–1703, 2000. View at Publisher · View at Google Scholar · View at PubMed
  65. M. Manttari, E. Tiula, T. Alikoski, and V. Manninen, “Effects of hypertension and dyslipidemia on the decline in renal function,” Hypertension, vol. 26, no. 4, pp. 670–675, 1995. View at Google Scholar
  66. L. G. Hunsicker, S. Adler, A. Caggiula et al., “Predictors of the progression of renal disease in the Modification of Diet in Renal Disease Study,” Kidney International, vol. 51, no. 6, pp. 1908–1919, 1997. View at Google Scholar
  67. L. F. Fried, T. J. Orchard, and B. L. Kasiske, “Effect of lipid reduction on the progression of renal disease: a meta-analysis,” Kidney International, vol. 59, no. 1, pp. 260–269, 2001. View at Publisher · View at Google Scholar · View at PubMed
  68. J. Chen, P. Muntner, L. L. Hamm et al., “The metabolic syndrome and chronic kidney disease in U.S. Adults,” Annals of Internal Medicine, vol. 140, no. 3, pp. 167–I39, 2004. View at Google Scholar
  69. L. Mykkänen, D. J. Zaccaro, L. E. Wagenknecht, D. C. Robbins, M. Gabriel, and S. M. Haffner, “Microalbuminuria is associated with insulin resistance in nondiabetic subjects: the insulin resistance atherosclerosis study,” Diabetes, vol. 47, no. 5, pp. 793–800, 1998. View at Publisher · View at Google Scholar
  70. C. M. Hoehner, K. J. Greenlund, S. Rith-Najarian, M. L. Casper, and W. M. McClellan, “Association of the insulin resistance syndrome and microalbuminuria among nondiabetic native Americans. The Inter-Tribal Heart Project,” Journal of the American Society of Nephrology, vol. 13, no. 6, pp. 1626–1634, 2002. View at Publisher · View at Google Scholar
  71. L. Palaniappan, M. Carnethon, and S. P. Fortmann, “Association between microalbuminuria and the metabolic syndrome: NHANES III,” American Journal of Hypertension, vol. 16, no. 11, pp. 952–958, 2003. View at Publisher · View at Google Scholar
  72. R. Fujikawa, M. Okubo, G. Egusa, and N. Kohno, “Insulin resistance precedes the appearance of albuminuria in non-diabetic subjects: 6 years follow up study,” Diabetes Research and Clinical Practice, vol. 53, no. 2, pp. 99–106, 2001. View at Publisher · View at Google Scholar
  73. L. Zhang, L. Zuo, F. Wang et al., “Metabolic syndrome and chronic kidney disease in a Chinese population aged 40 years and older,” Mayo Clinic Proceedings, vol. 82, no. 7, pp. 822–827, 2007. View at Publisher · View at Google Scholar
  74. M. Kurella, J. C. Lo, and G. M. Chertow, “Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults,” Journal of the American Society of Nephrology, vol. 16, no. 7, pp. 2134–2140, 2005. View at Publisher · View at Google Scholar · View at PubMed
  75. H. Tanaka, Y. Shiohira, Y. Uezu, A. Higa, and K. Iseki, “Metabolic syndrome and chronic kidney disease in Okinawa, Japan,” Kidney International, vol. 69, no. 2, pp. 369–374, 2006. View at Publisher · View at Google Scholar · View at PubMed
  76. A. Rashidi, A. Ghanbarian, and F. Azizi, “Are patients who have metabolic syndrome without diabetes at risk for developing chronic kidney disease? Evidence based on data from a large cohort screening population,” Clinical Journal of the American Society of Nephrology, vol. 2, no. 5, pp. 976–983, 2007. View at Publisher · View at Google Scholar · View at PubMed
  77. J. Chen, D. Gu, C. S. Chen et al., “Association between the metabolic syndrome and chronic kidney disease in Chinese adults,” Nephrology Dialysis Transplantation, vol. 22, no. 4, pp. 1100–1106, 2007. View at Publisher · View at Google Scholar · View at PubMed
  78. C. Kitiyakara, S. Yamwong, S. Cheepudomwit et al., “The metabolic syndrome and chronic kidney disease in a Southeast Asian cohort,” Kidney International, vol. 71, no. 7, pp. 693–700, 2007. View at Publisher · View at Google Scholar · View at PubMed
  79. A. O. Y. Luk, W. Y. So, R. C. W. Ma et al., “Metabolic syndrome predicts new onset of chronic kidney disease in 5,829 patients with type 2 diabetes A 5-year prospective analysis of the Hong Kong diabetes registry,” Diabetes Care, vol. 31, no. 12, pp. 2357–2361, 2008. View at Publisher · View at Google Scholar · View at PubMed
  80. S. Y. Jang, I.-H. Kim, E. Y. Ju, S. J. Ahn, D.-K. Kim, and S. W. Lee, “Chronic kidney disease and metabolic syndrome in a general Korean population: the Third Korea National Health and Nutrition Examination Survey (KNHANES III) Study,” Journal of Public Health, vol. 32, no. 4, pp. 538–546, 2010. View at Publisher · View at Google Scholar · View at PubMed
  81. M. Yu, D. R. Ryu, S. J. Kim, K. B. Choi, and D. H. Kang, “Clinical implication of metabolic syndrome on chronic kidney disease depends on gender and menopausal status: results from the Korean National Health and Nutrition Examination Survey,” Nephrology Dialysis Transplantation, vol. 25, no. 2, pp. 469–477, 2010. View at Publisher · View at Google Scholar · View at PubMed
  82. B. Becker, F. Kronenberg, J. T. Kielstein et al., “Renal insulin resistance syndrome, adiponectin and cardiovascular events in patients with kidney disease: the mild and moderate kidney disease study,” Journal of the American Society of Nephrology, vol. 16, no. 4, pp. 1091–1098, 2005. View at Publisher · View at Google Scholar · View at PubMed
  83. L. M. Thorn, C. Forsblom, J. Fagerudd et al., “Metabolic syndrome in type 1 diabetes: association with diabetic nephropathy and glycemic control (the FinnDiane study),” Diabetes Care, vol. 28, no. 8, pp. 2019–2024, 2005. View at Publisher · View at Google Scholar
  84. S. Kobayashi, S. Maejima, T. Ikeda, and M. Nagase, “Impact of dialysis therapy on insulin resistance in end-stage renal disease: comparison of haemodialysis and continuous ambulatory peritoneal dialysis,” Nephrology Dialysis Transplantation, vol. 15, no. 1, pp. 65–70, 2000. View at Google Scholar
  85. S. J. L. Bakker, R. T. Gansevoort, and D. de Zeeuw, “Metabolic syndrome: a fata morgana?” Nephrology Dialysis Transplantation, vol. 22, no. 1, pp. 15–20, 2007. View at Publisher · View at Google Scholar · View at PubMed
  86. J. Chen, P. Muntner, L. L. Hamm et al., “Insulin resistance and risk of chronic kidney disease in nondiabetic US adults,” Journal of the American Society of Nephrology, vol. 14, no. 2, pp. 469–477, 2003. View at Publisher · View at Google Scholar
  87. C. Y. Hsu, C. E. McCulloch, C. Iribarren, J. Darbinian, and A. S. Go, “Body mass index and risk for end-stage renal disease,” Annals of Internal Medicine, vol. 144, no. 1, pp. 21–28, 2006. View at Google Scholar
  88. A. Sjoholm and T. Nystrom, “Endothelial inflammation in insulin resistance,” Lancet, vol. 365, no. 9459, pp. 610–612, 2005. View at Publisher · View at Google Scholar · View at PubMed
  89. J. R. Sowers, “Metabolic risk factors and renal disease,” Kidney International, vol. 71, no. 8, pp. 719–720, 2007. View at Publisher · View at Google Scholar · View at PubMed
  90. U. Özcan, Q. Cao, E. Yilmaz et al., “Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes,” Science, vol. 306, no. 5695, pp. 457–461, 2004. View at Publisher · View at Google Scholar · View at PubMed
  91. H. Kaneto, Y. Nakatani, T. Miyatsuka et al., “Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide,” Nature Medicine, vol. 10, no. 10, pp. 1128–1132, 2004. View at Publisher · View at Google Scholar · View at PubMed
  92. D. J. Bridgewater, J. Ho, V. Sauro, and D. G. Matsell, “Insulin-like growth factors inhibit podocyte apoptosis through the PI3 kinase pathway,” Kidney International, vol. 67, no. 4, pp. 1308–1314, 2005. View at Publisher · View at Google Scholar · View at PubMed
  93. M. Carlyle, O. B. Jones, J. J. Kuo, and J. E. Hall, “Chronic cardiovascular and renal actions of leptin: role of adrenergic activity,” Hypertension, vol. 39, no. 2, pp. 496–501, 2002. View at Publisher · View at Google Scholar
  94. V. Moreno-Manzano, Y. Ishikawa, J. Lucio-Cazana, and M. Kitamura, “Selective involvement of superoxide anion, but not downstream compounds hydrogen peroxide and peroxynitrite, in tumor necrosis factor-α-induced apoptosis of rat mesangial cells,” Journal of Biological Chemistry, vol. 275, no. 17, pp. 12684–12691, 2000. View at Publisher · View at Google Scholar
  95. X. Zhou, G. Yang, C. A. Davis et al., “Hydrogen peroxide mediates FK506-induced cytotoxicity in renal cells,” Kidney International, vol. 65, no. 1, pp. 139–147, 2004. View at Publisher · View at Google Scholar · View at PubMed
  96. T. S. Perlstein, M. Gerhard-Herman, N. K. Hollenberg, G. H. Williams, and A. Thomas, “Insulin induces renal vasodilation, increases plasma renin activity, and sensitizes the renal vasculature to angiotensin receptor blockade in healthy subjects,” Journal of the American Society of Nephrology, vol. 18, no. 3, pp. 944–951, 2007. View at Publisher · View at Google Scholar · View at PubMed
  97. B. Balkau and M. A. Charles, “Comment on the provisional report from the WHO consultation,” Diabetic Medicine, vol. 16, no. 5, pp. 442–443, 1999. View at Publisher · View at Google Scholar
  98. M. Khamaisi, A. Flyvbjerg, Z. Haramati, G. Raz, I. D. Wexler, and I. Raz, “Effect of mild hypoinsulinemia on renal hypertrophy: growth hormone/insulin-like growth factor 1 system in mild streptozotocin diabetes,” International Journal of Experimental Diabetes Research, vol. 3, no. 4, pp. 257–264, 2002. View at Publisher · View at Google Scholar
  99. S. Wang, M. DeNichilo, C. Brubaker, and R. Hirschberg, “Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy,” Kidney International, vol. 60, no. 1, pp. 96–105, 2001. View at Publisher · View at Google Scholar · View at PubMed
  100. E. Lupia, S. J. Elliot, O. Lenz et al., “IGF-1 decreases collagen degradation in diabetic NOD mesangial cells: implications for diabetic nephropathy,” Diabetes, vol. 48, no. 8, pp. 1638–1644, 1999. View at Publisher · View at Google Scholar
  101. N. Kambham, G. S. Markowitz, A. M. Valeri, J. Lin, and V. D. D'Agati, “Obesity-related glomerulopathy: an emerging epidemic,” Kidney International, vol. 59, no. 4, pp. 1498–1509, 2001. View at Publisher · View at Google Scholar · View at PubMed
  102. A. H. Cohen, “Massive obesity and the kidney: a morphologic and statistical study,” American Journal of Pathology, vol. 81, no. 1, pp. 117–127, 1975. View at Google Scholar
  103. B. L. Kasiske, M. P. O'Donnell, and W. F. Keane, “The Zucker rat model of obesity, insulin resistance, hyperlipidemia, and renal injury,” Hypertension, vol. 19, no. 1, pp. I110–I115, 1992. View at Google Scholar
  104. A. Chagnac, T. Weinstein, A. Korzets, E. Ramadan, J. Hirsch, and U. Gafter, “Glomerular hemodynamics in severe obesity,” American Journal of Physiology—Renal Physiology, vol. 278, no. 5, pp. F817–F822, 2000. View at Google Scholar
  105. A. Chagnac, T. Weinstein, M. Herman, J. Hirsh, U. Gafter, and Y. Ori, “The effects of weight loss on renal function in patients with severe obesity,” Journal of the American Society of Nephrology, vol. 14, no. 6, pp. 1480–1486, 2003. View at Publisher · View at Google Scholar
  106. M. Tomaszewski, F. J. Charchar, C. Maric et al., “Glomerular hyperfiltration: a new marker of metabolic risk,” Kidney International, vol. 71, no. 8, pp. 816–821, 2007. View at Publisher · View at Google Scholar · View at PubMed
  107. K. R. Tuttle, J. L. Bruton, M. C. Perusek, J. L. Lancaster, D. T. Kopp, and R. A. DeFronzo, “Effect of strict glycemic control on renal hemodynamic response to amino acids and renal enlargement in insulin-dependent diabetes mellitus,” New England Journal of Medicine, vol. 324, no. 23, pp. 1626–1632, 1991. View at Google Scholar
  108. K. R. Tuttle, M. E. Puhlman, S. K. Cooney, and R. A. Short, “Effects of amino acids and glucagon on renal hemodynamics in type 1 diabetes,” American Journal of Physiology—Renal Physiology, vol. 282, no. 1, pp. F103–F112, 2002. View at Google Scholar
  109. D. A. Maddox, F. K. Alavi, R. N. Santella, and E. T. Zawada Jr., “Prevention of obesity-linked renal disease: age-dependent effects of dietary food restriction,” Kidney International, vol. 62, no. 1, pp. 208–219, 2002. View at Publisher · View at Google Scholar · View at PubMed
  110. R. L. Meek, S. K. Cooney, S. D. Flynn et al., “Amino acids induce indicators of response to injury in glomerular mesangial cells,” American Journal of Physiology—Renal Physiology, vol. 285, no. 1, pp. F79–F86, 2003. View at Google Scholar
  111. K. R. Tuttle, E. C. Johnson, S. K. Cooney et al., “Amino acids injure mesangial cells by advanced glycation end products, oxidative stress, and protein kinase C,” Kidney International, vol. 67, no. 3, pp. 953–968, 2005. View at Publisher · View at Google Scholar · View at PubMed
  112. D. Bonnefont-Rousselot, J. P. Bastard, M. C. Jaudon, and J. Delattre, “Consequences of the diabetic status on the oxidant/antioxidant balance,” Diabetes and Metabolism, vol. 26, no. 3, pp. 163–176, 2000. View at Google Scholar
  113. B. P. Oberg, E. McMenamin, F. L. Lucas et al., “Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease,” Kidney International, vol. 65, no. 3, pp. 1009–1016, 2004. View at Publisher · View at Google Scholar · View at PubMed
  114. T. Nishikawa and E. Araki, “Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications,” Antioxidants and Redox Signaling, vol. 9, no. 3, pp. 343–353, 2007. View at Publisher · View at Google Scholar
  115. X. Z. Ruan, Z. Varghese, S. H. Powis, and J. F. Moorhead, “Human mesangial cells express inducible macrophage scavenger receptor,” Kidney International, vol. 56, no. 2, pp. 440–451, 1999. View at Publisher · View at Google Scholar · View at PubMed
  116. X. Z. Ruan, Z. Varghese, and J. F. Moorhead, “Inflammation modifies lipid-mediated renal injury,” Nephrology Dialysis Transplantation, vol. 18, no. 1, pp. 27–32, 2003. View at Publisher · View at Google Scholar
  117. I. Gavras and H. Gavras, “Angiotensin II as a cardiovascular risk factor,” Journal of Human Hypertension, vol. 16, no. 2, pp. S2–S6, 2002. View at Google Scholar
  118. L. Chalmers, F. J. Kaskel, and O. Bamgbola, “The role of obesity and its bioclinical correlates in the progression of chronic kidney disease,” Advances in Chronic Kidney Disease, vol. 13, no. 4, pp. 352–364, 2006. View at Publisher · View at Google Scholar · View at PubMed
  119. C. Guichard, R. Moreau, D. Pessayre, T. K. Epperson, and K. H. Krause, “NOX family NADPH oxidases in liver and in pancreatic islets: a role in the metabolic syndrome and diabetes?” Biochemical Society Transactions, vol. 36, no. 5, pp. 920–929, 2008. View at Publisher · View at Google Scholar · View at PubMed
  120. S. S. Prabhakar, “Role of nitric oxide in diabetic nephropathy,” Seminars in Nephrology, vol. 24, no. 4, pp. 333–344, 2004. View at Publisher · View at Google Scholar
  121. G. L. Bakris, “Clinical importance of microalbuminuria in diabetes and hypertension,” Current Hypertension Reports, vol. 6, no. 5, pp. 352–356, 2004. View at Google Scholar
  122. J. P. Garg and G. L. Bakris, “Microalbuminuria: marker of vascular dysfunction, risk factor for cardiovascular disease,” Vascular Medicine, vol. 7, no. 1, pp. 35–43, 2002. View at Publisher · View at Google Scholar
  123. M. Montagnani, L. V. Ravichandran, H. Chen, D. L. Esposito, and M. J. Quon, “Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells,” Molecular Endocrinology, vol. 16, no. 8, pp. 1931–1942, 2002. View at Publisher · View at Google Scholar
  124. H. Chen, M. Montagnani, T. Funahashi, I. Shimomura, and M. J. Quon, “Adiponectin stimulates production of nitric oxide in vascular endothelial cells,” Journal of Biological Chemistry, vol. 278, no. 45, pp. 45021–45026, 2003. View at Publisher · View at Google Scholar · View at PubMed
  125. H. Laine, M. J. Knuuti, U. Ruotsalainen et al., “Insulin resistance in essential hypertension is characterized by impaired insulin stimulation of blood flow in skeletal muscle,” Journal of Hypertension, vol. 16, no. 2, pp. 211–219, 1998. View at Publisher · View at Google Scholar
  126. H. O. Steinberg, H. Chaker, R. Leaming, A. Johnson, G. Brechtel, and A. D. Baron, “Obesity/insulin resistance is associated with endothelial dysfunction: implications for the syndrome of insulin resistance,” Journal of Clinical Investigation, vol. 97, no. 11, pp. 2601–2610, 1996. View at Google Scholar
  127. H. O. Steinberg, G. Paradisi, G. Hook, K. Crowder, J. Cronin, and A. D. Baron, “Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production,” Diabetes, vol. 49, no. 7, pp. 1231–1238, 2000. View at Google Scholar
  128. G. Anfossi, F. Cavalot, P. Massucco et al., “Insulin influences immunoreactive endothelin release by human vascular smooth muscle cells,” Metabolism, vol. 42, no. 9, pp. 1081–1083, 1993. View at Publisher · View at Google Scholar
  129. C. Ferri, V. Pittoni, A. Piccoli et al., “Insulin stimulates endothelin-1 secretion from human endothelial cells and modulates its circulating levels in vivo,” Journal of Clinical Endocrinology and Metabolism, vol. 80, no. 3, pp. 829–835, 1995. View at Publisher · View at Google Scholar
  130. T. A. Marsen, H. Schramek, and M. J. Dunn, “Renal actions of endothelin: linking cellular signaling pathways to kidney disease,” Kidney International, vol. 45, no. 2, pp. 336–344, 1994. View at Google Scholar
  131. P. Cirillo, Y. Y. Sautin, J. Kanellis et al., “Systemic inflammation, metabolic syndrome and progressive renal disease,” Nephrology Dialysis Transplantation, vol. 24, no. 5, pp. 1384–1387, 2009. View at Publisher · View at Google Scholar · View at PubMed
  132. A. R. Gaby, “Adverse effects of dietary fructose,” Alternative Medicine Review, vol. 10, no. 4, pp. 294–306, 2005. View at Google Scholar
  133. S. S. Elliott, N. L. Keim, J. S. Stern, K. Teff, and P. J. Havel, “Fructose, weight gain, and the insulin resistance syndrome,” American Journal of Clinical Nutrition, vol. 76, no. 5, pp. 911–922, 2002. View at Google Scholar
  134. I. Hwang, H. Ho, B. B. Hoffman, and G. M. Reaven, “Fructose-induced insulin resistance and hypertension in rats,” Hypertension, vol. 10, no. 5, pp. 512–516, 1987. View at Google Scholar
  135. J. T. Dwyer, M. Evans, E. J. Stone et al., “Adolescents' eating patterns influence their nutrient intakes,” Journal of the American Dietetic Association, vol. 101, no. 7, pp. 798–802, 2001. View at Google Scholar
  136. D. B. Corry, P. Eslami, K. Yamamoto, M. D. Nyby, H. Makino, and M. L. Tuck, “Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system,” Journal of Hypertension, vol. 26, no. 2, pp. 269–275, 2008. View at Publisher · View at Google Scholar · View at PubMed
  137. R. Cirillo, M. S. Gersch, W. Mu et al., “Ketohexokinase-dependent metabolism of fructose Induces proinflammatory mediators in proximal tubular cells,” Journal of the American Society of Nephrology, vol. 20, no. 3, pp. 545–553, 2009. View at Publisher · View at Google Scholar · View at PubMed
  138. C. A. Roncal, W. Mu, B. Croker et al., “Effect of elevated serum uric acid on cisplatin-induced acute renal failure,” American Journal of Physiology—Renal Physiology, vol. 292, no. 1, pp. F116–F122, 2007. View at Publisher · View at Google Scholar · View at PubMed
  139. D. H. Kang, T. Nakagawa, L. Feng et al., “A role for uric acid in the progression of renal disease,” Journal of the American Society of Nephrology, vol. 13, no. 12, pp. 2888–2897, 2002. View at Publisher · View at Google Scholar
  140. P. M. Ridker, C. H. Hennekens, J. E. Buring, and N. Rifai, “C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women,” New England Journal of Medicine, vol. 342, no. 12, pp. 836–843, 2000. View at Publisher · View at Google Scholar
  141. S. Soriano, L. González, A. Martín-Malo, M. Rodríguez, P. Aljama, and S. S. Cabrera, “C-reactive protein and low albumin are predictors of morbidity and cardiovascular events in chronic kidney disease (CKD) 3–5 patients,” Clinical Nephrology, vol. 67, no. 6, pp. 352–357, 2007. View at Google Scholar
  142. M. Arici and J. Walls, “End-stage renal disease, atherosclerosis, and cardiovascular mortality: is C-reactive protein the missing link?” Kidney International, vol. 59, no. 2, pp. 407–414, 2001. View at Publisher · View at Google Scholar · View at PubMed
  143. M. Bochud, J. Nussberger, P. Bovet et al., “Plasma aldosterone is independently associated with the metabolic syndrome,” Hypertension, vol. 48, no. 2, pp. 239–245, 2006. View at Publisher · View at Google Scholar · View at PubMed
  144. S. Kidambi, J. M. Kotchen, C. E. Grim et al., “Association of adrenal steroids with hypertension and the metabolic syndrome in blacks,” Hypertension, vol. 49, no. 3, pp. 704–711, 2007. View at Publisher · View at Google Scholar · View at PubMed
  145. G. Colussi, C. Catena, R. Lapenna, E. Nadalini, A. Chiuch, and L. A. Sechi, “Insulin resistance and hyperinsulinemia are related to plasma aldosterone levels in hypertensive patients,” Diabetes Care, vol. 30, no. 9, pp. 2349–2354, 2007. View at Publisher · View at Google Scholar · View at PubMed
  146. T. Fujita, “Spotlight on renin. The renin system, salt-sensitivity and metabolic syndrome,” Journal of the Renin-Angiotensin-Aldosterone System, vol. 7, no. 3, pp. 181–183, 2006. View at Publisher · View at Google Scholar · View at PubMed
  147. P. Korantzopoulos, M. Elisaf, and H. J. Milionis, “Multifactorial intervention in metabolic syndrome targeting at prevention of chronic kidney disease—ready for prime time?” Nephrology Dialysis Transplantation, vol. 22, no. 10, pp. 2768–2774, 2007. View at Publisher · View at Google Scholar · View at PubMed
  148. P. Gæde, P. Vedel, N. Larsen, G. V. H. Jensen, H. H. Parving, and O. Pedersen, “Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes,” New England Journal of Medicine, vol. 348, no. 5, pp. 383–393, 2003. View at Publisher · View at Google Scholar · View at PubMed
  149. R. W. Schrier, R. O. Estacio, A. Esler, and P. Mehler, “Effects of aggressive blood pressure control in normotensive type 2 diabetic patients on albuminuria, retinopathy and strokes,” Kidney International, vol. 61, no. 3, pp. 1086–1097, 2002. View at Publisher · View at Google Scholar · View at PubMed
  150. A. Patel, S. MacMahon, J. Chalmers et al., “Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes,” New England Journal of Medicine, vol. 358, no. 24, pp. 2560–2572, 2008. View at Publisher · View at Google Scholar · View at PubMed
  151. H. C. Gerstein, M. E. Miller, R. P. Byington et al., “Effects of intensive glucose lowering in type 2 diabetes,” New England Journal of Medicine, vol. 358, no. 24, pp. 2545–2559, 2008. View at Publisher · View at Google Scholar · View at PubMed
  152. W. C. Cushman, G. W. Evans, R. P. Byington et al., “Effects of intensive blood-pressure control in type 2 diabetes mellitus,” New England Journal of Medicine, vol. 362, no. 17, pp. 1575–1585, 2010. View at Publisher · View at Google Scholar · View at PubMed
  153. I. Eidemak, B. Feldt-Rasmussen, I. L. Kanstrup, S. L. Nielsen, O. Schmitz, and S. Strandgaard, “Insulin resistance and hyperinsulinaemia in mild to moderate progressive chronic renal failure and its association with aerobic work capacity,” Diabetologia, vol. 38, no. 5, pp. 565–572, 1995. View at Publisher · View at Google Scholar
  154. R. R. Wing and B. Marquez, “Behavioral aspects of weight loss in type 2 diabetes,” Current Diabetes Reports, vol. 8, no. 2, pp. 126–131, 2008. View at Publisher · View at Google Scholar
  155. M. Navarro-Díaz, A. Serra, R. Romero et al., “Effect of drastic weight loss after bariatric surgery on renal parameters in extremely obese patients: long-term follow-up,” Journal of the American Society of Nephrology, vol. 17, supplement 3, pp. S213–S217, 2006. View at Publisher · View at Google Scholar · View at PubMed
  156. S. B. Heymsfield, K. R. Segal, J. Hauptman et al., “Effects of weight loss with orlistat on glucose tolerance and progression to type 2 diabetes in obese adults,” Archives of Internal Medicine, vol. 160, no. 9, pp. 1321–1326, 2000. View at Google Scholar
  157. K. Esposito, R. Marfella, M. Ciotola et al., “Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial,” Journal of the American Medical Association, vol. 292, no. 12, pp. 1440–1446, 2004. View at Publisher · View at Google Scholar · View at PubMed
  158. American Diabetes Association, “Standards of medical care in diabetes 2010,” Diabetes Care, vol. 33, supplement 1, pp. S11–S61, 2010. View at Google Scholar
  159. J. P. Casas, W. Chua, S. Loukogeorgakis et al., “Effect of inhibitors of the renin-angiotensin system and other antihypertensive drugs on renal outcomes: systematic review and meta-analysis,” Lancet, vol. 366, no. 9502, pp. 2026–2033, 2005. View at Publisher · View at Google Scholar · View at PubMed
  160. R. E. Schmieder, K. F. Hilgers, M. P. Schlaich, and B. M. Schmidt, “Renin-angiotensin system and cardiovascular risk,” Lancet, vol. 369, no. 9568, pp. 1208–1219, 2007. View at Publisher · View at Google Scholar · View at PubMed
  161. R. H. Eckel, S. M. Grundy, and P. Z. Zimmet, “The metabolic syndrome,” Lancet, vol. 365, no. 9468, pp. 1415–1428, 2005. View at Publisher · View at Google Scholar · View at PubMed
  162. G. Mancia, G. de Backer, A. Dominiczak et al., “2007 Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC),” Journal of Hypertension, vol. 25, no. 6, pp. 1105–1187, 2007. View at Publisher · View at Google Scholar · View at PubMed
  163. T. H. Jafar, P. C. Stark, C. H. Schmid et al., “Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis,” Annals of Internal Medicine, vol. 139, no. 4, pp. 244–252, 2003. View at Google Scholar
  164. T. J. Orchard, M. Temprosa, R. Goldberg et al., “The effect of metformin and intensive lifestyle intervention on the metabolic syndrome: the diabetes prevention program randomized trial,” Annals of Internal Medicine, vol. 142, no. 8, pp. 611–619, 2005. View at Google Scholar
  165. W. C. Knowler, E. Barrett-Connor, S. E. Fowler et al., “Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin,” New England Journal of Medicine, vol. 346, no. 6, pp. 393–403, 2002. View at Publisher · View at Google Scholar · View at PubMed
  166. S. Giannini, M. Serio, and A. Galli, “Pleiotropic effects of thiazolidinediones: taking a look beyond antidiabetic activity,” Journal of Endocrinological Investigation, vol. 27, no. 10, pp. 982–991, 2004. View at Google Scholar
  167. H. C. Gerstein, S. Yusuf, J. Bosch et al., “Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial,” Lancet, vol. 368, pp. 1096–1105, 2006. View at Google Scholar
  168. S. E. Nissen and K. Wolski, “Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes,” New England Journal of Medicine, vol. 356, no. 24, pp. 2457–2471, 2007. View at Google Scholar
  169. L. R. Kurukulasuriya and J. R. Sowers, “Therapies for type 2 diabetes: lowering HbA1c and associated cardiovascular risk factors,” Cardiovascular Diabetology, vol. 9, article 45, 2010. View at Publisher · View at Google Scholar · View at PubMed
  170. F. A. van de Laar, P. L. B. J. Lucassen, R. P. Akkermans, E. H. van de Lisdonk, and W. J. C. de Grauw, “Alpha-glucosidase inhibitors for people with impaired glucose tolerance or impaired fasting blood glucose,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD005061, 2006. View at Publisher · View at Google Scholar · View at PubMed
  171. M. Hanefeld, J. L. Chiasson, C. Koehler, E. Henkel, F. Schaper, and T. Temelkova-Kurktschiev, “Acarbose slows progression of intima-media thickness of the carotid arteries in subjects with impaired glucose tolerance,” Stroke, vol. 35, no. 5, pp. 1073–1078, 2004. View at Publisher · View at Google Scholar · View at PubMed
  172. J.-L. Chiasson, R. G. Josse, R. Gomis, M. Hanefeld, A. Karasik, and M. Laakso, “Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial,” Journal of the American Medical Association, vol. 290, no. 4, pp. 486–494, 2003. View at Publisher · View at Google Scholar · View at PubMed
  173. R. E. Amori, J. Lau, and A. G. Pittas, “Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis,” Journal of the American Medical Association, vol. 298, no. 2, pp. 194–206, 2007. View at Publisher · View at Google Scholar · View at PubMed
  174. R. Bhushan, K. E. Elkind-Hirsch, M. Bhushan, W. J. Butler, K. Duncan, and O. Marrioneaux, “Exenatide use in the management of metabolic syndrome: a retrospective data base study,” Endocrine Practice, vol. 14, no. 8, pp. 933–999, 2008. View at Google Scholar
  175. R. Bergenstal, T. Kim, M. Trautmann, D. Zhuang, T. Okerson, and K. Taylor, “Exenatide once weekly elicited improvements in blood pressure and lipid profile over 52 weeks in patients with type 2 diabetes,” Circulation, vol. 118, p. S1086, 2008. View at Google Scholar
  176. G. C. Mistry, A. L. Maes, K. C. Lasseter et al., “Effect of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on blood pressure in nondiabetic patients with mild to moderate hypertension,” Journal of Clinical Pharmacology, vol. 48, no. 5, pp. 592–598, 2008. View at Publisher · View at Google Scholar · View at PubMed
  177. G. Derosa, P. Maffioli, S. A. T. Salvadeo et al., “Exenatide versus glibenclamide in patients with diabetes,” Diabetes Technology and Therapeutics, vol. 12, no. 3, pp. 233–240, 2010. View at Publisher · View at Google Scholar · View at PubMed
  178. D. M. Nathan, J. B. Buse, M. B. Davidson et al., “Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy—a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes,” Clinical Diabetes, vol. 32, no. 1, pp. 193–203, 2009. View at Publisher · View at Google Scholar · View at PubMed
  179. UK Prospective Diabetes Study (UKPDS) Group, “Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33),” Lancet, vol. 12, no. 352, pp. 837–353, 1998. View at Google Scholar
  180. K. Pyörälä, C. M. Ballantyne, B. Gumbiner et al., “Reduction of cardiovascular events by simvastatin in nondiabetic coronary heart disease patients with and without the metabolic syndrome: subgroup analyses of the Scandinavian Simvastatin Survival Study (4S),” Diabetes Care, vol. 27, no. 7, pp. 1735–1740, 2004. View at Publisher · View at Google Scholar
  181. P. Deedwania, P. Barter, R. Carmena et al., “Reduction of low-density lipoprotein cholesterol in patients with coronary heart disease and metabolic syndrome: analysis of the Treating to New Targets study,” Lancet, vol. 368, no. 9539, pp. 919–928, 2006. View at Publisher · View at Google Scholar · View at PubMed
  182. S. Sandhu, N. Wiebe, L. F. Fried, and M. Tonelli, “Statins for improving renal outcomes: a meta-Analysis,” Journal of the American Society of Nephrology, vol. 17, no. 7, pp. 2006–2016, 2006. View at Publisher · View at Google Scholar · View at PubMed
  183. K. Douglas, P. G. O'Malley, and J. L. Jackson, “Meta-analysis: the effect of statins on albuminuria,” Annals of Internal Medicine, vol. 145, no. 2, pp. 117–124, 2006. View at Google Scholar
  184. V. G. Athyros, D. P. Mikhailidis, E. N. Liberopoulos et al., “Effect of statin treatment on renal function and serum uric acid levels and their relation to vascular events in patients with coronary heart disease and metabolic syndrome,” Nephrology Dialysis Transplantation, vol. 22, no. 1, pp. 118–127, 2007. View at Publisher · View at Google Scholar · View at PubMed
  185. J.-C. Ansquer, C. Foucher, S. Rattier, M.-R. Taskinen, and G. Steiner, “Fenofibrate reduces progression to microalbuminuria over 3 years in a placebo-controlled study in type 2 diabetes: results from the Diabetes Atherosclerosis Intervention Study (DAIS),” American Journal of Kidney Diseases, vol. 45, no. 3, pp. 485–493, 2005. View at Publisher · View at Google Scholar · View at PubMed
  186. R. Kahn, J. Buse, E. Ferrannini, and M. Stern, “The metabolic syndrome: time for a critical appraisal—joint statement from the American Diabetes Association and the European Association for the Study of Diabetes,” Diabetes Care, vol. 28, no. 9, pp. 2289–2304, 2005. View at Publisher · View at Google Scholar
  187. M. P. Stern, K. Williams, C. González-Villalpando, K. J. Hunt, and S. M. Haffner, “Does the metabolic-syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease?” Diabetes Care, vol. 27, no. 11, pp. 2676–2681, 2004. View at Publisher · View at Google Scholar