Table of Contents Author Guidelines Submit a Manuscript
International Journal of Food Science
Volume 2013, Article ID 237581, 9 pages
http://dx.doi.org/10.1155/2013/237581
Research Article

The Influence of Interfering Substances on the Antimicrobial Activity of Selected Quaternary Ammonium Compounds

LEPAE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Received 10 April 2013; Revised 18 July 2013; Accepted 1 August 2013

Academic Editor: Keiko Kawamoto

Copyright © 2013 Paula A. Araújo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. S. G. Dooley and T. A. Roberts, “Control of vegetative micro-organisms in foods,” British Medical Bulletin, vol. 56, no. 1, pp. 142–157, 2000. View at Google Scholar · View at Scopus
  2. M. Simões, L. C. Simões, and M. J. Vieira, “A review of current and emergent biofilm control strategies,” LWT-Food Science and Technology, vol. 43, no. 4, pp. 573–583, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. P. J. Bremer, S. Fillery, and A. J. McQuillan, “Laboratory scale Clean-In-Place (CIP) studies on the effectiveness of different caustic and acid wash steps on the removal of dairy biofilms,” International Journal of Food Microbiology, vol. 106, no. 3, pp. 254–262, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Srey, I. K. Jahid, and S.-D. Ha, “Biofilm formation in food industries: a food safety concern,” Food Control, vol. 31, no. 2, pp. 572–585, 2013. View at Publisher · View at Google Scholar
  5. S. J. Forsythe and P. R. Hayes, Food Hygiene, Microbiology and HACCP, Aspen Publishers, Gaithersburg, Md, USA, 3rd edition, 1998.
  6. M. Simões, L. C. Simões, I. Machado, M. O. Pereira, and M. J. Vieira, “Control of flow-generated biofilms with surfactants: evidence of resistance and recovery,” Food and Bioproducts Processing, vol. 84, no. 4 C, pp. 338–345, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Simões, M. O. Pereira, and M. J. Vieira, “Effect of mechanical stress on biofilms challenged by different chemicals,” Water Research, vol. 39, no. 20, pp. 5142–5152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Z. Atay, O. Yenigün, and M. Asutay, “Sorption of anionic surfactants SDS, AOT and cationic surfactant hyamine 1622 on natural soils,” Water, Air, and Soil Pollution, vol. 136, no. 1–4, pp. 55–67, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Simões, M. O. Pereira, and M. J. Vieira, “Action of a cationic surfactant on the activity and removal of bacterial biofilms formed under different flow regimes,” Water Research, vol. 39, no. 2-3, pp. 478–486, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Paulus, Directory of Microbicides for the Protection of Materials—A Handbook, Springer, Chapman and Hall, 1993.
  11. M. R. J. Salton, “Lytic agents, cell permeability, and monolayer penetrability,” The Journal of General Physiology, vol. 52, no. 1, pp. 227–252, 1968. View at Google Scholar · View at Scopus
  12. C. Ferreira, A. M. Pereira, M. C. Pereira, L. F. Melo, and M. Simões, “Physiological changes induced by the quaternary ammonium compound benzyldimethyldodecylammonium chloride on Pseudomonas fluorescens,” Journal of Antimicrobial Chemotherapy, vol. 66, no. 5, pp. 1036–1043, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. T. E. Cloete, L. Jacobs, and V. S. Brözel, “The chemical control of biofouling in industrial water systems,” Biodegradation, vol. 9, no. 1, pp. 23–37, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Bessems, “The effect of practical conditions on the efficacy of disinfectants,” International Biodeterioration & Biodegradation, vol. 41, no. 3-4, pp. 177–183, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. S. F. A. A. E. Aal, B. Hunsinger, and R. Böhm, “Determination of the bactericidal activity of chemical disinfectants against bacteria in dairies according to the DVG-guidelines,” Hygiene & Medizin, vol. 33, no. 11, pp. 463–471, 2008. View at Google Scholar · View at Scopus
  16. L. Gram, D. Bagge-Ravn, Y. Y. Ng, P. Gymoese, and B. F. Vogel, “Influence of food soiling matrix on cleaning and disinfection efficiency on surface attached Listeria monocytogenes,” Food Control, vol. 18, no. 10, pp. 1165–1171, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. R. J. W. Lambert and M. D. Johnston, “The effect of interfering substances on the disinfection process: a mathematical model,” Journal of Applied Microbiology, vol. 91, no. 3, pp. 548–555, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. European Standard EN-1276, Chemical disinfectants and antiseptics-Quantitative suspension test for the evaluation of bactericidal activity of chemical disinfectants and antiseptics used in food, industrial, domestic, and institutional areas-Test method and requirements (phase 2, step 1), 1997.
  19. K. Jonõ, T. Takayama, M. Kuno, and E. Higashide, “Effect of alkyl chain length of benzalkonium chloride on the bactericidal activity and binding to organic materials,” Chemical & Pharmaceutical Bulletin, vol. 34, no. 10, pp. 4215–4224, 1986. View at Google Scholar · View at Scopus
  20. S. A. Gani, D. K. Chattoraj, and D. C. Mukherjee, “Binding of cationic surfactants to DNA, protein and DNA-protein mixtures,” Indian Journal of Biochemistry & Biophysics, vol. 36, no. 3, pp. 165–176, 1999. View at Google Scholar · View at Scopus
  21. M. Simões, M. O. Pereira, I. Machado, L. C. Simões, and M. J. Vieira, “Comparative antibacterial potential of selected aldehyde-based biocides and surfactants against planktonic Pseudomonas fluorescens,” Journal of Industrial Microbiology and Biotechnology, vol. 33, no. 9, pp. 741–749, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Simões, L. C. Simões, and M. J. Vieira, “Species association increases biofilm resistance to chemical and mechanical treatments,” Water Research, vol. 43, no. 1, pp. 229–237, 2009. View at Publisher · View at Google Scholar
  23. C. G. Kumar and S. K. Anand, “Significance of microbial biofilms in food industry: a review,” International Journal of Food Microbiology, vol. 42, no. 1-2, pp. 9–27, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. L. C. Simões, M. Lemos, P. Araújo, A. M. Pereira, and M. Simões, “The effects of glutaraldehyde on the control of single and dual biofilms of Bacillus cereus and Pseudomonas fluorescens,” Biofouling, vol. 27, no. 3, pp. 337–346, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. K. M. Johnson, “Bacillus cereus foodborne illness—an update,” Journal of Food Protection, vol. 47, no. 2, pp. 145–153, 1984. View at Google Scholar
  26. S. Notermans, J. Dufrenne, P. Teunis, R. Beumer, M. te Giffel, and P. Peeters Weem, “A risk assessment study of Bacillus cereus present in pasteurized milk,” Food Microbiology, vol. 14, no. 2, pp. 143–151, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. T. E. Cloete, “Resistance mechanisms of bacteria to antimicrobial compounds,” International Biodeterioration & Biodegradation, vol. 51, no. 4, pp. 277–282, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Simões, L. C. Simões, M. O. Pereira, and M. J. Vieira, “Antagonism between Bacillus cereus and Pseudomonas fluorescens in planktonic systems and in biofilms,” Biofouling, vol. 24, no. 5, pp. 339–349, 2008. View at Google Scholar · View at Scopus
  29. M. Simões, S. Cleto, M. O. Pereira, and M. J. Vieira, “Influence of biofilm composition on the resistance to detachment,” Water Science and Technology, vol. 55, no. 8-9, pp. 473–480, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Simões, M. O. Pereira, and M. J. Vieira, “Validation of respirometry as a short-term method to assess the efficacy of biocides,” Biofouling, vol. 21, no. 1, pp. 9–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. M. D. Johnston, R. J. W. Lambert, G. W. Hanlon, and S. P. Denyer, “A rapid method for assessing the suitability of quenching agents for individual biocides as well as combinations,” Journal of Applied Microbiology, vol. 92, no. 4, pp. 784–789, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Heinzel, “Phenomena of biocide resistance in microorganisms,” International Biodeterioration & Biodegradation, vol. 41, no. 3-4, pp. 225–234, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Otzen, “Protein-surfactant interactions: a tale of many states,” Biochimica et Biophysica Acta, vol. 1814, no. 5, pp. 562–591, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. G. McDonnell and A. D. Russell, “Antiseptics and disinfectants: activity, action, and resistance,” Clinical Microbiology Reviews, vol. 12, no. 1, pp. 147–179, 1999. View at Google Scholar · View at Scopus
  35. A. D. Russell, “Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations,” The Lancet Infectious Diseases, vol. 3, no. 12, pp. 794–803, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Møretrø, L. K. Vestby, L. L. Nesse, S. E. Storheim, K. Kotlarz, and S. Langsrud, “Evaluation of efficacy of disinfectants against Salmonella from the feed industry,” Journal of Applied Microbiology, vol. 106, no. 3, pp. 1005–1012, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. C. A. Lawrence, “Mechanism of action and neutralizing agents for surface-active materials upon microorganisms,” Annals of the New York Academy of Sciences, vol. 53, no. 1, pp. 66–75, 1950. View at Google Scholar · View at Scopus
  38. B. E. Christensen, H. Ertesvåg, H. Beyenal, and Z. Lewandowski, “Resistance of biofilms containing alginate-producing bacteria to disintegration by an alginate degrading enzyme (AlgL),” Biofouling, vol. 17, no. 3, pp. 203–210, 2001. View at Google Scholar · View at Scopus
  39. J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial biofilms: a common cause of persistent infections,” Science, vol. 284, no. 5418, pp. 1318–1322, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Watnick and R. Kolter, “Biofilm, city of microbes,” Journal of Bacteriology, vol. 182, no. 10, pp. 2675–2679, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. T. F. C. Mah and G. A. O'Toole, “Mechanisms of biofilm resistance to antimicrobial agents,” Trends in Microbiology, vol. 9, no. 1, pp. 34–39, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. D. G. Davies, A. M. Chakrabarty, and G. G. Geesey, “Exopolysaccharide production in biofilms—substratum activation of alginate gene-expression by Pseudomonas aeruginosa,” Applied and Environmental Microbiology, vol. 59, no. 4, pp. 1181–1186, 1993. View at Google Scholar · View at Scopus
  43. D. G. Davies and G. G. Geesey, “Regulation of the alginate biosynthesis gene Algc in Pseudomonas aeruginosa during biofilm development in continuous culture,” Applied and Environmental Microbiology, vol. 61, no. 3, pp. 860–867, 1995. View at Google Scholar · View at Scopus
  44. P. Stewart, Ed., Multicellular Nature of Biofilm Protection from Antimicrobial Agents, 2003.
  45. U. A. Shinde and M. S. Nagarsenker, “Characterization of gelatin-sodium alginate complex coacervation system,” Indian Journal of Pharmaceutical Sciences, vol. 71, no. 3, pp. 313–317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. E. A. Ghabbour, G. Davies, and International Humic Substances Society, Humic Substances: Nature's Most Versatile Materials, Taylor & Francis, New York, NY, USA, 2004.
  47. M. Tong, P. Zhu, X. Jiang, and H. Kim, “Influence of natural organic matter on the deposition kinetics of extracellular polymeric substances (EPS) on silica,” Colloids and Surfaces B, vol. 87, no. 1, pp. 151–158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Ishiguro, W. Tan, and L. K. Koopal, “Binding of cationic surfactants to humic substances,” Colloids and Surfaces A, vol. 306, no. 1–3, pp. 29–39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. L. K. Koopal, T. P. Goloub, and T. A. Davis, “Binding of ionic surfactants to purified humic acid,” Journal of Colloid and Interface Science, vol. 275, no. 2, pp. 360–367, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. S. A. Visser, “Physiological action of humic substances on microbial cells,” Soil Biology & Biochemistry, vol. 17, no. 4, pp. 457–462, 1985. View at Google Scholar · View at Scopus
  51. S. Salati, G. Papa, and F. Adani, “Perspective on the use of humic acids from biomass as natural surfactants for industrial applications,” Biotechnology Advances, vol. 29, no. 6, pp. 913–922, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. H. A. Hartung, “Stimulation of anaerobic digestion with peat humic substance,” Science of the Total Environment, vol. 113, no. 1-2, pp. 17–33, 1992. View at Google Scholar · View at Scopus
  53. I. D. Pouneva, “Effect of humic substances on the growth of microalgal cultures,” Russian Journal of Plant Physiology, vol. 52, no. 3, pp. 410–413, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Hakobyan, L. Gabrielyan, and A. Trchounian, “Yeast extract as an effective nitrogen source stimulating cell growth and enhancing hydrogen photoproduction by Rhodobacter sphaeroides strains from mineral springs,” International Journal of Hydrogen Energy, vol. 37, no. 8, pp. 6519–6526, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. A. K. Camper, “Involvement of humic substances in regrowth,” International Journal of Food Microbiology, vol. 92, no. 3, pp. 355–364, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. M. R. W. Brown and R. M. E. Richards, “Effect of ethylenediamine tetraacetate on the resistance of Pseudomonas aeruginosa to antibacterial agents,” Nature, vol. 207, no. 5004, pp. 1391–1393, 1965. View at Publisher · View at Google Scholar · View at Scopus
  57. S. K. Sagoo, R. Board, and S. Roller, “Chitosan potentiates the antimicrobial action of sodium benzoate on spoilage yeasts,” Letters in Applied Microbiology, vol. 34, no. 3, pp. 168–172, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Langsrud, B. Baardsen, and G. Sundheim, “Potentiation of the lethal effect of peroxygen on Bacillus cereus spores by alkali and enzyme wash,” International Journal of Food Microbiology, vol. 56, no. 1, pp. 81–86, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. J. S. Chapman, “Biocide resistance mechanisms,” International Biodeterioration and Biodegradation, vol. 51, no. 2, pp. 133–138, 2003. View at Publisher · View at Google Scholar · View at Scopus