International Journal of Food Science
 Journal metrics
Acceptance rate21%
Submission to final decision93 days
Acceptance to publication52 days
CiteScore2.100
Impact Factor-

Indexing news

International Journal of Food Science has recently been accepted into:
Food Science and Technology Abstracts, and
Emerging Sources Citation Index

Go to Table of Contents

 Journal profile

International Journal of Food Science publishes research in all areas of food science. It is a multidisciplinary journal and includes research on enhancing shelf life, food deterioration, food engineering, food handling, food processing and similar.

 Editor spotlight

International Journal of Food Science maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

The Effects of Using Chemicals to Remove Slime from African Giant Land Snails Flesh during Processing on Some Nutritional and Biochemical Parameters

The effects of chemicals commonly used in Cameroon to eliminate slime from the flesh of the African giant land snail, Archachatina marginata, during processing on some nutritional and biochemical parameters were investigated. Groups of snails were processed with these chemicals at three different concentrations. Proximate analysis of all the treated snail groups was carried out, and groups with the highest concentration of each chemical were used to compose diets for experimental rats. Thirty weanling male Wistar albino rats () aged 21days old were distributed into four groups and fed with 10% protein based diets of A. marginata named D1 (washed with only water), D2 (lime C-treated), D3 (alum C-treated), and D4 (salt C-treated). The crude protein contents of the treated groups reduced significantly when compared with the control (CW), with lime C-treated (LC) having the least here and in crude fiber, but higher (LC, LB, and LA) in dry matter. There was a significant reduction in the crude lipid of alum C-treated (AC) and salt A-treated (SA). In vivo studies showed a general decrease in food consumption, weight gained, efficiency of feed utilization (EFU), true protein digestibility (TD) (except D2), and hematological indices (RBCs (red blood cells), PCV (packed cell volume) of the treated groups (D2, D3, D4) when compared to the control (D1). On the other hand, an increase in the relative weight of the liver (RWL), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total cholesterol was observed with some of the treated diets; meanwhile, protein efficiency ratio (PER), net protein ratio (NPR), relative weight of the kidneys (RWK), HDL cholesterol, and triglycerides were not affected by these diets. These chemicals should only be used at low concentrations or not at all because of its toxicity at high concentrations.

Research Article

The Effect of Processing of Hempseed on Protein Recovery and Emulsification Properties

The effect of carbohydrate-hydrolysing enzyme blend with or without supercritical CO2 (SFE) defatting on pretreat hempseed meal, hempseeds, peeled hempseeds, hempseed protein powder, and germinated hempseeds was determined. The raw materials and recovered fractions from the treatments were subjected to gel electrophoresis, and their emulsion capacity, activity, and stability as well as colour (CIE values) were determined. The highest protein contents, 65% ( dm), were detected in soluble fractions prepared from germinated, defatted hempseeds followed by soluble fractions of peeled, defatted hempseed, 55% ( dm). The gel electrophoresis showed quite similar protein profiles for all samples; however, the edestin content was lower in the germinated samples than in the others. Enzyme treatment and SFE did not have a significant effect on the emulsion properties. Germinated samples demonstrated a higher ability to stabilise emulsions (15-20%) than other pretreated samples. On the other hand, hempseed meal samples had lower emulsification activity and stability values compared to the other samples. The colour of the sample solutions varied from light to dark with a brown to yellowish colour, and PHS samples showed overall higher values. In conclusion, germination and peeling in combination with defatting are promising methods to produce functional protein concentrates with efficient emulsion stability and activity as well as a mild colour for food applications.

Research Article

Use of α-Lactalbumin and Caseinoglycomacropeptide as Biopeptide Precursors and as Functional Additives in Milk Beverages Fermented by L. helveticus

The objective of this investigation was to verify whether biologically active peptides (BAPs) could be obtained from water solutions of α-lactalbumin (α-la) and caseinoglycomacropeptide (CGMP) through an application of the new Lactobacillus helveticus strains. Also, the aim of this research was to determine the influence of addition of the analyzed protein preparations to milk subjected to fermentation by tested bacterial strains on the physicochemical properties of obtained milk beverages. The results indicate that CGMP is a more preferable source for the production of BAPs by the test bacteria than α-la. The antihypertensive and ACE inhibitory effects were the most widespread bioactivities among the detected BAPs. α-la containing fermented milk beverages had higher values of springiness, gumminess, chewiness, and resilience than analogous products containing CGMP, while CGMP-supplemented fermented products exhibited higher values of the hardness parameter. The highest values of hardness ( N) were recorded for beverages fermented by DSMZ containing the addition of CGMP, while the lowest value of this parameter ( N) was noted for products containing α-la and fermented by B734. Moreover, CGMP-containing fermented products were characterized by a generally higher value of the proteolysis index (PI) than analogous variants containing α-la. The use of analyzed strains and the selected protein preparations has a positive effect on the texture of fermented milk beverages and might contribute to an increase in the health-promoting potential of such products.

Research Article

Microbiological and Physicochemical Characteristics of Three Types of “Soumbara” from Seeds of African Locust Bean in Korhogo Markets, Côte d’Ivoire

“Soumbara” is a fermented product sold in the markets of several West African countries. In the markets, it is sold in several formats (granulated, powder, and paste). The objective of this study was to evaluate the microbiological and physicochemical characteristics of these three types of “Soumbara” sold in the Korhogo markets. For this purpose, a preliminary survey followed by a sampling of 54 samples of “Soumbara” was carried out. The microorganism load count was carried out according to microbiological standards. The pH, titratable acidity, and moisture content were measured, respectively, with a pH meter, by dosing with sodium hydroxide solution and by differential weighing after passing the sample through the oven. The pH of the different samples is around 6. The moisture content is higher in “Soumbara” paste (20-24.7%) than in powdered (7.3-9.3%) and granulated (8.6-10.7%) “Soumbara.” The acidity rates are between 0.07 and 0.13%, 0.2 and 0.3%, and 0.08 and 0.1%, respectively, for the granulated, powder, and paste types. Mesophilic aerobic germ loads (6.17-8.38 log10 cfu/g) for all three types of “Soumbara” are above the standard. Total coliform (1.13-2.96 log10 cfu/g), mould (0.86-2.52 log10 cfu/g), and yeast (0.33-1.53 log10 cfu/g) loads are below standard. The microbiological quality of the three types of “Soumbara” is unsatisfactory. Overall, “Soumbara” powder is the most contaminated, followed by granulated and paste “Soumbara.” “Soumbara” must be added during culinary preparations in order to avoid possible public health problems.

Research Article

Effect of Using Quinoa Flour (Chenopodium quinoa Willd.) on the Physicochemical Characteristics of an Extruded Pasta

Quinoa is a promising raw material for the production of foods with high nutritional quality. This study used quinoa flour (Chenopodium quinoa Willd.), egg white, and yucca starch to obtain an extruded pasta. By means of a proximate analysis, the nutritional content of the raw materials, uncooked and cooked pasta, was evaluated. The effects of quinoa flour on the protein composition, physical properties (color, texture, loss through cooking, water absorption, and swelling indices), moisture, DSC, and SEM were evaluated through its comparison with a commercial pasta (control) formulated with quinoa (PCQ). The values obtained during the study were subjected to a simple analysis of variance (ANOVA) to determine the interaction between the factors and the variables by using a statistical program. Incorporation of quinoa flour in the formulations (F1, F2, and F3) increased notoriously the protein content () and decreased the carbohydrate content, and no significant differences were observed for lipids and ash. The energy value increased due to the essential amino acids present in quinoa. The values obtained for , , and increased with the increase in quinoa flour, and significant differences for () were attributed to the characteristic color of quinoa, drying time, and moisture content. The lack of molecular interaction between starch and protein due to the conditions used in the extrusion process influenced the decrease in rupture strength, increase in the water absorption and swelling indices, and losses due to cooking (8 g/100 g) within an acceptable range. Consequently, affected by the enthalpy of fusion, the starch granules of the quinoa flour did not gelatinize, as observed in the SEM micrographs. The results obtained and the parameters used in the extrusion process influenced the characteristics of the pasta, indicating that quinoa flour is a promising raw material for obtaining gluten-free products.

Research Article

Drying Kinetics and Quality of Whole, Halved, and Pulverized Tiger Nut Tubers (Cyperus esculentus)

The objective of this study was to provide the optimum drying conditions to produce high-quality dried tiger nuts using hot-air drying. For this, we evaluated the effect of the whole, halved, and pulverized tiger nuts and air temperature (50 to 70°C) on the drying kinetics and quality of tiger nuts. The drying process generally followed a constant rate in the first 3 hours and a falling regime. We found the optimum drying conditions for tiger nuts to be crushed before convective hot-air drying at a temperature of 70°C. At this optimum condition, the predicted drying time, vitamin C content, reducing sugars, browning, brightness, redness, and yellowness was 780 min, 22.9 mg/100 mg dry weight, 157.01 mg/100 g dry weight, 0.21 Abs unit, 56.97, 1.6, and 17.0, respectively. The tiger nut’s reducing sugars increased from the 130.8 mg/100 dry weight in the raw tiger nuts to between 133.11 and 158.18 mg/100 dry weight after drying. The vitamin C degradation rate was highest in the uncut tiger nuts (32-35%) while in the halved and the pulverized samples, it was between 12 and 17%. The crushed samples’ effective moisture removal increased between 5.6- and 6.75-fold at the different air temperatures than that of the intact tiger nuts. The activation energy was 18.17 kJ/mol for the unbroken, 14.78 kJ/mol for the halved, and 26.61 kJ/mol for the pulverized tiger nut samples. The model was the most suitable thin-layer drying model among the models examined for convective hot-air drying of tiger nuts. It is advisable to crush tiger nut before hot-air drying to produce better-quality flour for making milk beverages, cakes, biscuits, bread, porridge, and tiger nut-based breakfast cereals.

International Journal of Food Science
 Journal metrics
Acceptance rate21%
Submission to final decision93 days
Acceptance to publication52 days
CiteScore2.100
Impact Factor-
 Submit