Table of Contents Author Guidelines Submit a Manuscript
International Journal of Food Science
Volume 2013 (2013), Article ID 514676, 8 pages
http://dx.doi.org/10.1155/2013/514676
Research Article

Enhanced Production of Xylitol from Corncob by Pachysolen tannophilus Using Response Surface Methodology

Department of Chemical Engineering, Annamalai University, Annamalainagar 608002, Tamil Nadu, India

Received 26 December 2012; Accepted 1 June 2013

Academic Editor: Bruce A. Welt

Copyright © 2013 S. Ramesh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. Manz, E. Vanninen, and F. Voirol, “Xylitol: its properties and use as a sugar,” in Proceedings of the Symposium on Sugar and Sugar Replacements, R. A. Food, Ed., London, UK, 1973.
  2. Y. M. Wang and J. van Eys, “Nutritional significance of fructose and sugar alcohols,” Annual Review of Nutrition, vol. 1, pp. 437–475, 1981. View at Google Scholar · View at Scopus
  3. A. Emidi, “Xylitol its properties and food application,” Food Technology, vol. 32, pp. 28–32, 1978. View at Google Scholar
  4. L. Hyvonen, P. Koivistoinen, and F. Voirol, “Food technological evaluation of xylitol,” Advances in Food Research, vol. 28, pp. 373–403, 1982. View at Google Scholar
  5. A. Bar, “Xylitol,” in Alternative Sweeteners, L. O. Nabors and L. Gelardi, Eds., pp. 185–216, Marcel Deeker, New York, NY, USA, 1986. View at Google Scholar
  6. O. Aguirre-Zero, D. T. Zero, and H. M. Proskin, “Effect of chewing xylitol chewing gum on salivary flow rate and the acidogenic potential of dental plaque,” Caries Research, vol. 27, no. 1, pp. 55–59, 1993. View at Google Scholar · View at Scopus
  7. K. K. Makinen, “The sugar that prevents that tooth decay,” The Futurist, pp. 135–139, 1976. View at Google Scholar
  8. J.-P. Mikkola and T. Salmi, “Three-phase catalytic hydrogenation of xylose to xylitol—prolonging the catalyst activity by means of on-line ultrasonic treatment,” Catalysis Today, vol. 64, no. 3-4, pp. 271–277, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. A. J. Melaji and L. Hamalainen, US patent no. 4. 008 285, 1997.
  10. E. Winkelhausen and S. Kuzmanova, “Microbial conversion of D-xylose to xylitol,” Journal of Fermentation and Bioengineering, vol. 86, no. 1, pp. 1–14, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Converti and J. M. Dominguez, “Influence of temperature and pH on xylitol production from xylose by Debaromyces hansenii,” Biotechnology and Bioengineering, vol. 75, pp. 39–45, 2001. View at Google Scholar
  12. A. Converti, P. Perego, A. Sordi, and P. Torre, “Effect of starting xylose concentration on the microaerobic metabolism of Debaryomyces hansenii: the use of carbon material balances,” Applied Biochemistry and Biotechnology A, vol. 101, no. 1, pp. 15–29, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. J. M. Domınguez, C. S. Gong, and G. Tsao, “Production of xylitol from D-xylose by Debaryomyces hansenii,” Applied Biochemistry and Biotechnology, vol. 63, pp. 117–127, 1997. View at Google Scholar
  14. F. M. Gırio, J. C. Roseiro, P. Sa-Machado, A. R. Duarte-Reis, and M. T. Amaral-Collaco, “Effect of oxygen transfer rate on levels of key enzymes of xylose metabolism in Debaryomyces hansenii,” Enzyme and Microbial Technology, vol. 16, no. 12, pp. 1074–1078, 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Ling, K. Cheng, J. Ge, and W. Ping, “Statistical optimization of xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02,” New Biotechnology, vol. 28, no. 6, pp. 673–678, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. G. E. Inglett, Corn: Culture, Processing and Production, AVI Publishing, Westport, Conn, USA, 1970.
  17. B. Barl, C. G. Biliaderis, E. D. Murray, and A. W. MacGregor, “Combined chemical and enzymic treatments of corn husk lignocellulosic,” Journal of Science of Food Agriculture, vol. 56, pp. 195–214, 1991. View at Google Scholar
  18. L. Olsson and B. Hahn-Hägerdal, “Fermentation of lignocellulosic hydrolysates for ethanol production,” Enzyme and Microbial Technology, vol. 18, no. 5, pp. 312–331, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Balan, B. Bals, S. P. S. Chundawat, D. Marshall, and B. E. Dale, “Ligocellulosic biomass pretreatment using AFEX,” Methods in Molecular Biology, vol. 581, pp. 61–77, 2009. View at Google Scholar · View at Scopus
  20. W. Liaw, C. Chen, W. Chang, and K. Chen, “Xylitol production from rice straw hemicellulose hydrolyzate by polyacrylic hydrogel thin films with immobilized candida subtropicalis WF79,” Journal of Bioscience and Bioengineering, vol. 105, no. 2, pp. 97–105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, New York, NY, USA, 2001.
  22. W. Li, W. Du, and D. Liu, “Optimization of whole cell-catalyzed methanolysis of soybean oil for biodiesel production using response surface methodology,” Journal of Molecular Catalysis B, vol. 45, no. 3-4, pp. 122–127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. B. J. Naveena, M. Altaf, K. Bhadrayya, and G. Reddy, “Direct fermentation of starch to L(+) lactic acid in SSF by Lactobacillus amylophilus GV6 using wheat bran as support and substrate: medium optimization using RSM,” Process Biochemistry, vol. 40, no. 2, pp. 681–690, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Y. Noordin, V. C. Venkatesh, S. Sharif, S. Elting, and A. Abdullah, “Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel,” Journal of Materials Processing Technology, vol. 145, no. 1, pp. 46–58, 2004. View at Publisher · View at Google Scholar · View at Scopus