Table of Contents Author Guidelines Submit a Manuscript
International Journal of Food Science
Volume 2014, Article ID 629062, 10 pages
http://dx.doi.org/10.1155/2014/629062
Research Article

Improvement of the Quality and the Shelf Life of the High Oxygen Modified Atmosphere Packaged Veal by Superficial Spraying with Dihydroquercetin Solution

1Department of Meat and Fish Technology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria
2Bulgarian Agency of Food Safety, 4400 Pazardjik, Bulgaria

Received 25 May 2014; Revised 7 August 2014; Accepted 20 August 2014; Published 10 September 2014

Academic Editor: Françoise Nau

Copyright © 2014 Stefan Georgiev Dragoev et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Ercolini, F. Russo, E. Torrieri, P. Masi, and F. Villani, “Changes in the spoilage-related microbiota of beef during refrigerated storage under different packaging conditions,” Applied and Environmental Microbiology, vol. 72, no. 7, pp. 4663–4671, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Lindahl, Å. Lagerstedt, P. Ertbjerg, S. Sampels, and K. Lundström, “Ageing of large cuts of beef loin in vacuum or high oxygen modified atmosphere—effect on shear force, calpain activity, desmin degradation and protein oxidation,” Meat Science, vol. 85, no. 1, pp. 160–166, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Eeckhaut, F. Boyen, F. Pasmans et al., “Clostridium novyi type B as a causative agent of bovine meat spoilage,” Anaerobe, vol. 18, no. 3, pp. 286–288, 2012. View at Publisher · View at Google Scholar
  4. G. Y. Ivanov, A. S. Staykov, D. K. Balev et al., “Effect of treatment with natural antioxidant on the chilled beef lipid oxidation,” Advance Journal of Food Science and Technology, vol. 2, no. 4, pp. 213–218, 2010. View at Google Scholar · View at Scopus
  5. M. Jakobsen and G. Bertelsen, “Colour stability and lipid oxidation of fresh beef. Development of a response surface model for predicting the effects of temperature, storage time, and modified atmosphere composition,” Meat Science, vol. 54, no. 1, pp. 49–57, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. H. Kim, E. Huff-Lonergan, J. G. Sebranek, and S. M. Lonergan, “High-oxygen modified atmosphere packaging system induces lipid and myoglobin oxidation and protein polymerization,” Meat Science, vol. 85, no. 4, pp. 759–767, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Staykov, D. Balev, K. Vasilev, S. Dragoev, and D. Vlahova-Vangelova, “Stabilisation of sensory properties, colour and conjugated lipid products in modified atmosphere packaged veal, treated with dihydroquercetin,” Food Processing Industry Magazine, vol. 63, no. 1, pp. 37–42, 2013 (Bulgarian). View at Google Scholar
  8. R. A. Mancini and M. C. Hunt, “Current research in meat color,” Meat Science, vol. 71, no. 1, pp. 100–121, 2005. View at Google Scholar
  9. S. D. M. Jones, L. E. Jeremiah, A. K. W. Tong, W. M. Robertson, and S. Lutz, “The effects of marbling level, electrical stimulation, and postmortem aging on the cooking and palatability properties of beef rib-eye steaks,” Canadian Journal of Animal Science, vol. 71, no. 4, pp. 1037–1043, 1991. View at Publisher · View at Google Scholar
  10. S. Dragoev, “Chemistry of the lipid peroxidation in meat and meat products,” Meat and Meat Products, vol. 21, no. 2, pp. 17–23, 2011 (Bulgarian). View at Google Scholar
  11. D. Djenane, A. Sánchez-Escalante, J. A. Beltrán, and P. Roncalés, “Extension of the shelf life of beef steaks packaged in a modified atmosphere by treatment with rosemary and displayed under UV-free lighting,” Meat Science, vol. 64, no. 4, pp. 417–426, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Bakalivanova, S. Grigorova, and N. Kaloyanov, “Effect of irradiation and packaging on lipid fraction of Bulgarian salami during storage,” Radiation Physics and Chemistry, vol. 78, no. 4, pp. 273–276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Karpińska-Tymoszczyk, “The effect of water-soluble rosemary extract, sodium erythorbate, their mixture and packaging method on the quality of Turkey meatballs,” Italian Journal of Food Science, vol. 23, no. 3, pp. 318–330, 2011. View at Google Scholar · View at Scopus
  14. B.-A. Rohlík and P. Pipek, “Rosemary extract and its affect on meat products' properties,” Fleschwirtschaft International, vol. 27, no. 2, pp. 70–74, 2012. View at Google Scholar
  15. D. K. Balev, A. S. Staykov, G. Y. Ivanov, G. St. Dragoev, and E. H. Filizov, “Color stability improvement of chilled beef by natural antioxidant treatment and modified atmosphere packaging,” American Journal of Food Technology, vol. 6, no. 2, pp. 117–128, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. N. T. M. McBride, S. A. Hogan, and J. P. Kerry, “Comparative addition of rosemary extract and additives on sensory and antioxidant properties of retail packaged beef,” International Journal of Food Science and Technology, vol. 42, no. 10, pp. 1201–1207, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. C. Rojas and M. S. Brewer, “Effect of natural antioxidants on oxidative stability of cooked, refrigerated beef and pork,” Journal of Food Science, vol. 72, no. 4, pp. S282–S288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Bakalivanova and N. Kaloyanov, “Effect of taxifolin, rosemary and synthetic antioxidants treatment on the poultry meat lipid peroxidation,” Comptes Rendus de L'Academie Bulgare des Sciences, vol. 65, no. 2, pp. 161–168, 2012. View at Google Scholar · View at Scopus
  19. P. Gatellier, C. Hamelin, Y. Durand, and M. Renerre, “Effect of a dietary vitamin E supplementation on colour stability and lipid oxidation of air- and modified atmosphere-packaged beef,” Meat Science, vol. 59, no. 2, pp. 133–140, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Karpińska-Tymoszczyk, “The effect of sage, sodium erythorbate and a mixture of sage and sodium erythorbate on the quality of turkey meatballs stored under vacuum and modified atmosphere conditions,” British Poultry Science, vol. 51, no. 6, pp. 745–759, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Karpińska-Tymoszczyk, “The effect of oil-soluble rosemary extract, sodium erythorbate, their mixture, and packaging method on the quality of Turkey meatballs,” Journal of Food Science and Technology, vol. 50, no. 3, pp. 443–454, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. B.-O. Rohlik, P. Pipek, and J. Panek, “The effect of natural antioxidants on the colour of dried/cooked sausages,” Czech Journal of Food Science, vol. 28, no. 4, pp. 249–257, 2010. View at Google Scholar
  23. S. Brewer, “Preserving beef quality with natural antioxidants,” White paper product enhancement research beef facts, research and knowledge management, Cattlemen's Beef Board and National Cattlemen's Beef Association, New York, NY, USA, 2011, http://www.beefresearch.org/CMDocs/BeefResearch/PE_White_%20Papers/Preserving_Beef_with_Natural_Antioxidants.pdf.
  24. B. Stodolak, A. Starzyńska, M. Czyszczoń, and K. Zyła, “The effect of phytic acid on oxidative stability of raw and cooked meat,” Food Chemistry, vol. 101, no. 3, pp. 1041–1045, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. R. C. Knock, M. Seyfert, M. C. Hunt et al., “Effects of potassium lactate, sodium chloride, sodium tripolyphosphate, and sodium acetate on colour, colour stability, and oxidative properties of injection-enhanced beef rib steaks,” Meat Science, vol. 74, no. 2, pp. 312–318, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. H. A. Sepe, C. Faustman, S. Lee, J. Tang, S. P. Suman, and K. S. Venkitanarayanan, “Effects of reducing agents on premature browning in ground beef,” Food Chemistry, vol. 93, no. 4, pp. 571–576, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. O. Ozer and C. Sariçoban, “The effects of butylated hydroxyanisole, ascorbic acid, and α-tocopherol on some quality characteristics of mechanically deboned chicken patty during freeze storage,” Czech Journal of Food Sciences, vol. 28, no. 2, pp. 150–160, 2010. View at Google Scholar · View at Scopus
  28. B. Babu and J.-T. Wu, “Production of natural butylated hydroxytoluene as an antioxidant by freshwater phytoplankton,” Journal of Phycology, vol. 44, no. 6, pp. 1447–1454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. G. V. Gurinovich, K. V. Lissin, and N. N. Potipaeva, “Preparation for increasing storage life of comminuted meat product,” Meat Industry, vol. 82, no. 2, pp. 31–33, 2005 (Russian). View at Google Scholar
  30. G. Y. Ivanov, A. S. Staykov, D. K. Balev et al., “Effect of natural antioxidant treatment and modified atmosphere packaging on the quality and shelf-life of chilled beef,” Agriculture and Biology Journal of North America, vol. 2, no. 4, pp. 451–457, 2010. View at Google Scholar · View at Scopus
  31. G. Ivanov, D. Balev, H. Nikolov, and S. Dragoev, “Improvement of the chilled salmon sensory quality by pulverisation with natural dihydroquercetin solutions,” Bulgarian Journal of Agricultural Science, vol. 15, no. 2, pp. 154–162, 2009. View at Google Scholar · View at Scopus
  32. D. Balev, G. Ivanov, H. Nikolov, and S. Dragoev, “Effect of natural antioxidant pre-treatment on the properties of colour surface of chilled-stored salmon discs,” Bulgarian Journal of Agricultural Science, vol. 15, no. 5, pp. 379–385, 2009. View at Google Scholar
  33. S. G. Dragoev, D. K. Balev, G. Y. Ivanov et al., “Effect of superficial treatment with new natural antioxidant on salmon (Salmo salar) lipid oxidation,” Acta Alimentaria, vol. 43, no. 1, pp. 1–8, 2014. View at Google Scholar
  34. E. F. Kurth and F. L. Chan, “Dihydroquercetin as an antioxidant,” Journal of the American Oil Chemists' Society, vol. 28, no. 10, pp. 433–436, 1951. View at Publisher · View at Google Scholar · View at Scopus
  35. A. E. Weidmann, “Dihydroquercetin: more than just an impurity?” European Journal of Pharmacology, vol. 684, no. 1–3, pp. 19–26, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. S. V. Jovanovic, S. Steenken, Y. Hara, and M. G. Simic, “Reduction potentials of flavonoid and model phenoxyl radicals. Which ring in flavonoids is responsible for antioxidant activity?” Journal of the Chemical Society. Perkin Transactions, vol. 2, no. 11, pp. 2497–2504, 1996. View at Google Scholar · View at Scopus
  37. D. L. Crawford, R. O. Sinnhuber, and H. Aft, “The effect of methylation upon the antioxidant and chelation capacity of quercetin and dihydroquercetin in a lard substrate,” Journal of Food Science, vol. 26, no. 2, pp. 139–145, 1961. View at Publisher · View at Google Scholar
  38. J. W. Chen, Z. Q. Zhu, T. X. Hu, and D. Y. Zhu, “Structure-activity relationship of natural flavonoids in hydroxyl radical-scavenging effects,” Acta Pharmacologica Sinica, vol. 23, no. 7, pp. 667–672, 2002. View at Google Scholar
  39. I. O. Teselkin, B. A. Zhambalova, I. V. Babenkova, and N. A. Tiukavkina, “Antioxidant properties of dihydroquercetin,” Biophysics, vol. 41, no. 3, pp. 620–624, 1996 (Russian). View at Google Scholar · View at Scopus
  40. Y. A. Vladimirov, E. V. Proskurnina, E. M. Demin et al., “Dihydroquercetin (taxifolin) and other flavonoids as inhibitors of free radical formation at key stages of apoptosis,” Biochemistry, vol. 74, no. 3, pp. 301–307, 2009 (Russian). View at Publisher · View at Google Scholar · View at Scopus
  41. N. A. Tjukavkina, I. A. Rulenko, and Y. A. Kolesnik, “Dihydroquercetin—a new antioxidant and biologically active food supplement,” Issues of Nutrition, vol. 65, no. 6, pp. 12–15, 1997 (Russian). View at Google Scholar · View at Scopus
  42. V. K. Kolhir, V. A. Bykov, A. I. Baginskaja et al., “Antioxidant activity of a dihydroquercetin isolated from Larix gmelinii (Rupr.) Rupr. Wood,” Phytotherapy Research, vol. 10, no. 6, pp. 478–482, 1996. View at Publisher · View at Google Scholar
  43. H. Dok-Go, K. H. Lee, H. J. Kim et al., “Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and quercetin 3-methyl ether, isolated from Opuntia ficus-indica var. saboten,” Brain Research, vol. 965, no. 1-2, pp. 130–136, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Chen and P. Deuster, “Comparison of quercetin and dihydroquercetin: antioxidant-independent actions on erythrocyte and platelet membrane,” Chemico-Biological Interactions, vol. 182, no. 1, pp. 7–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Tešanović, B. Kalenjuk, D. Tešanović, Đ. Psodorov, Z. Ristić, and V. Marković, “Changes of biochemical and sensory characteristics in the muscles longissimus dorsi of the fallow deer in the early phase post-mortem and during maturation,” African Journal of Biotechnology, vol. 10, no. 55, pp. 11668–11675, 2011. View at Google Scholar
  46. E. Kardash and Y. I. Tur'yan, “Acid value determination in vegetable oils by indirect titration in aqueous-alcohol media,” Croatica Chemica Acta, vol. 78, no. 1, pp. 99–103, 2005. View at Google Scholar
  47. H. Korkeala, O. Mäki-Petäys, T. Alanko, and O. Sorvettula, “Determination of pH in meat,” Meat Science, vol. 18, no. 2, pp. 121–132, 1986. View at Google Scholar
  48. E. G. Bligh and W. J. Dyer, “A rapid method of total lipid extraction and purification,” Canadian Journal of Biochemistry and Physiology, vol. 37, no. 8, pp. 911–917, 1959. View at Publisher · View at Google Scholar · View at Scopus
  49. N. A. Botsoglou, D. J. Fletouris, G. E. Papageorgiou, V. N. Vassilopoulos, A. J. Mantis, and A. G. Trakatellis, “Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples,” Journal of Agricultural and Food Chemistry, vol. 42, no. 9, pp. 1931–1937, 1994. View at Publisher · View at Google Scholar · View at Scopus
  50. W. Christie, “Extraction and hydrolysis of lipids and some reactions of their fatty acid components,” in CRC Handbook of Chromatography: Lipids, vol. 2, CRC Press Lipids, Boca Raton, Fla, USA, 1984. View at Google Scholar
  51. S. L. Scotter, S. Langton, B. Lombard et al., “Validation of ISO method 11290. Part 1—detection of Listeria monocytogenes in foods,” International Journal of Food Microbiology, vol. 64, no. 3, pp. 295–306, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. L. Piknová, A. Štefanovicová, H. Drahovská, M. Sásik, and T. Kuchta, “Detection of Salmonella in food equivalent to ISO 6579, by a three-days polymerase chain reaction-based method,” Food Control, vol. 13, no. 3, pp. 191–194, 2002. View at Publisher · View at Google Scholar
  53. I. Nastasijevic, R. Mitrovic, and S. Buncic, “The occurrence of Escherichia coli O157 in/on faeces, carcasses and fresh meats from cattle,” Meat Science, vol. 82, no. 1, pp. 101–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. N. Cohen, H. Ennaji, B. Bouchrif, M. Hassar, and H. Karib, “Comparative study of microbiological quality of raw poultry meat at various seasons and for different slaughtering processes in Casablanca (Morocco),” The Journal of Applied Poultry Research, vol. 16, no. 4, pp. 502–508, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. N. R. Draper and H. Smith, Applied Regression Analysis, Wiley Series in Probability and Statistics: Texts and References Section, John Wiley & Sons, New York, NY, USA, 3rd edition, 1998.
  56. M. G. Kenward, “A method for comparing profiles of repeated measurements,” Applied Statistic, vol. 36, no. 3, pp. 296–308, 1987. View at Google Scholar
  57. F. W. Sosulski and G. I. Imafidon, “Amino acid composition and nitrogen-to-protein conversion factors for animal and plant foods,” Journal of Agricultural and Food Chemistry, vol. 38, no. 6, pp. 1351–1356, 1990. View at Publisher · View at Google Scholar · View at Scopus
  58. C. Feidt, A. Petit, F. Bruas-Reignier, and J. Brun-Bellut, “Release of free amino-acids during ageing in bovine meat,” Meat Science, vol. 44, no. 1-2, pp. 19–25, 1996. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Pennacchia, D. Ercolini, and F. Villani, “Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack,” Food Microbiology, vol. 28, no. 1, pp. 84–93, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. A. G. Koch, H. Christensen, S. P. Eides, and L. Meinert, “Shelf life requirements for fresh meat and meat products,” in Proceedings of the 55th International Congress Meat Science Technology, Parallel Session 8. Microbial and Chemical Spoilage, Copenhagen, Denmark, August 2009.
  61. “Commission Regulation (EC) No 1441/2007 of 5 December 2007 amending Regulation (EC) No 2073/2005 on microbiological criteria for foodstuffs,” Official Journal of Eurropean Union, no. 322, pp. 12–29, 2007.