Table of Contents Author Guidelines Submit a Manuscript
International Journal of Food Science
Volume 2019, Article ID 7835253, 7 pages
https://doi.org/10.1155/2019/7835253
Review Article

Significance and Characteristics of Listeria monocytogenes in Poultry Products

1Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
2Social Determinants of Health Research Center, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran

Correspondence should be addressed to Tayebeh Zeinali; moc.liamg@ylaniez.at

Received 26 January 2019; Revised 17 March 2019; Accepted 24 March 2019; Published 18 April 2019

Academic Editor: Alejandro Castillo

Copyright © 2019 Abdollah Jamshidi and Tayebeh Zeinali. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Listeria monocytogenes is one of the most common foodborne pathogens. Poultry meat and products are of the main vehicles of pathogenic strains of L. monocytogenes for human. Poultry products are part of the regular diet of people and, due to nutrient content, more content of protein, and less content of fat, gain more attention. In comparison with red meat, poultry meat is more economical. So, it had a greater rate of consumption especially in barbecue form in which the growth of bacterium is favored. Subtyping of L. monocytogenes isolates is essential for epidemiological investigation and for identification of the source of contamination. In the following review, the main facet of presence of L. monocytogenes in poultry will be discussed. Most pathogenic serotypes of L. monocytogenes were detected in different products of poultry meat. Unfortunately, these isolated pathogens had sometimes resistance to commonly used antibiotics which were used for treatment of human infection.

1. Characteristics of Listeria monocytogenes

Listeria spp. are small gram-positive rod (0.5–4 μm in diameter and 0.5–2 μm in length), non-spore-forming, facultative anaerobic, catalase-positive, and oxidase-negative organisms. Listeria has tumbling motility at 20–25°C due to peritrichous flagella. Based on somatic (O) and flagellar (H) antigens, 13 serotypes were identified in Listeria monocytogenes (L. monocytogenes) including 1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 4ab, 4b, 4c, 4d, 4e, and 7 [1]. With the aid of multiplex PCR assay, four major serovars of L. monocytogenes strains can be categorized into four distinct serogroups, IIa (serovars 1/2a, 1/2c, 3a, and 3c), IIb (1/2b, 3b, 4b,4d, and 4e), IIc (1/2c and 3c), and IVb (4b, 4d, and 4e) by targeting four marker genes [2]. Food or food production environment is commonly contaminated with serotypes 1/2a, 1/2b, 1/2c, and 4b. The optimum growth temperature of L. monocytogenes is 30–37°C, but it can survive between 0 and 45°C. L. monocytogenes can multiply at refrigerator temperatures, is resistant to disinfectants, and adheres to various surfaces [1]. Once introduced into the processing plants, it is able to survive and remain for a long period under adverse conditions [1]. In the food industry, L. monocytogenes is able to form biofilm which can act as a potential source of contamination [3]. L. monocytogenes is a widely distributed organism in nature, with main reservoirs of soil and forage. Moreover, it was isolated from healthy humans and animals or infected domestic and wild animals [4].

2. Listeriosis

L. monocytogenes is the main cause of foodborne listeriosis in humans. Rarely, foodborne infections were reported by L. ivanovii and L. seeligeri. Strains of L. monocytogenes have different pathogenic potential, as some strains are very virulent, whereas some of them are noninfectious agents [4, 5]. Determination of the pathogenic potential of L. monocytogenes is important from food safety and public health perspective [6]. Identification of virulent strains can be achieved through tracing some genes directly related to pathogenicity of L. monocytogenes [7]. L. monocytogenes enters into host cells by use of a family of surface proteins called internalins, especially InlA and inlB. Moreover, InlC and InlJ also participate in the postintestinal stages of L. monocytogenes infection [8]. Putative internalins of L. monocytogenes are encoded by inlC (lmo1786) and inlJ (lmo2821) genes. The etiologic organism of human’s listeriosis harbors inlJ (lmo2821) [9]. L. monocytogenes carries a pore-forming toxin named listeriolysin O (LLO) (a 58 KDa protein-encoded by hlyA gene) which is vital for virulence of the bacterium [4]. LLO lyses the membrane of the vacuole and finally assists the entrance of L. monocytogenes into the cytoplasm [4]. Several methods had been used to assess the virulence of L. monocytogenes. Some of them include mouse virulence assay, cell culture, and use of specific genes and proteins [8]. Table 1 shows some specific genes used to determine the virulence of L. monocytogenes isolates in poultry.

Table 1: Specific genes used to determine the virulence of L. monocytogenes.

Foodborne listeriosis has three main clinical features, namely, meningitis, septicemia, and abortion. In healthy humans it can cause febrile gastroenteritis, but in susceptible persons (children, elderly, immune-compromised and pregnant women) it may lead to septicemia and meningitis [1].

Listeriosis is the fourth commonly zoonotic disease in Europe, with the annual incidence of 0.41 cases per 100,000 population [10]. In Asian countries, reports of listeriosis rarely exist due to the failure of detection or report. Also, it may be due to lower incidence rate or exclusion of listeriosis for differential diagnosis by clinicians. However, L. monocytogenes has been regarded as one of the etiological factors of spontaneous abortions and stillbirth in India [11].

People more than 65 years old and neonates had the highest rates of infection with L. monocytogenes [12]. Maternal transmission to newborns was reported in 79% of cases. Listeriosis has the highest case fatality rate among foodborne diseases [10]. Isolation of L. monocytogenes from different kinds of RTE foods made it a remarkable foodborne pathogen [13, 14].

3. Subtyping of L. monocytogenes

Due to diverse strains of L. monocytogenes, subtyping of isolates for population genetics, source tracking, and the epidemiologic investigation is crucial for control and prevention of listeriosis. Typing of L. monocytogenes is needed to identify the sources of contamination and investigate foodborne listeriosis outbreaks [15, 16]. Phenotypic and genotypic subtyping are the two main methods which were used by researchers. As a phenotypic method, serotyping is generally used for L. monocytogenes strains related to disease outbreaks. Due to the involvement of only three serotypes in listeriosis outbreaks and low discriminatory power of serotyping in distinguishing of serotypes 4a, 4b, and 4c, serotyping does not have enough power for subtyping of L. monocytogenes [16]. So, PCR-based subtyping procedure such as Random Amplification of Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR), Repetitive Extragenic Palindromes-PCR (REP-PCR), Enterobacterial Repetitive Intergenic Consensus-PCR (ERIC-PCR), and Pulsed Field Gel Electrophoresis (PFGE) gain more attention these days. RAPD assay amplified some random region in the L. monocytogenes genomes which generate distinct patterns. RAPD is more cost effective and faster than other typing methods, especially for low number of strains. RAPD-PCR technique is one of the main methods for bacterial strain characterization [1518]. Enterobacterial Repetitive Intergenic Consensus-PCR (ERIC-PCR) is a highly reliable, simple, and economic method which is able to produce clear fingerprint in Listeria [19]. ERIC-PCR analysis can separate the isolates of the same serotype. Also, it is capable of differentiating L. monocytogenes isolates which were detected in one sample with similar serotype [18].

Restriction Fragment Length Polymorphisms (RFLP) amplified one or some of the housekeeping or virulence-associated genes (e.g., hly, actA, and inlA) of L. monocytogenes and then digested PCR products with restriction enzymes [16]. It needs a low copy number of DNA to perform the experiment [16]. But, it has a lower discriminatory power and should be used along with other subtyping techniques and it is also more expensive than RAPD assay [20]. One of the other methods of genotyping of L. monocytogenes isolates is Amplified Fragment Length Polymorphisms (AFLP) method. In AFLP, digestion of DNA of isolates was done with two restriction enzymes including EcoRI, MseI, or TaqI [16]. One of the main advantages of AFLP is the high discriminatory power of this test [20]. In contrast, the pitfall of this method is low precision in fragment sizes, which leads to lower reproducibility [16].

PFGE is a tool in which, by exposing large DNA fragment to changing electric field, isolates were subtyped. This technique was more discriminatory than AFLP, but is more time consuming, expensive, and labor intensive in comparison with AFLP [20].

L. monocytogenes also has some randomly dispersed, repetitive sequence elements, such as repetitive extragenic palindromes (REPs) of 35–40 bp with an inverted repeat. These regions provide some useful points for strain distinction of L. monocytogenes isolates. Using REP-PCR, the origin of isolates was identified. It has an equal level of discrimination to PFGE. So it is suggested as a suitable technique for rapid typing of these isolates [16].

4. Listeria in the Poultry

4.1. Prevalence of Listeria Spp. and L. monocytogenes in the Poultry

One of the main vehicles of Listeria is poultry flocks which can spread the organism into the environment and poultry carcass due to unhygienic practice [21]. Occasionally, Listeria was isolated from the feces of poultry and chicken. Listeria spp. were detected in various poultry products [13, 2225]. According to other studies, 8% to 99% of poultry products were contaminated with Listeria spp. [13, 24, 26, 27].

L. monocytogenes has been previously reported from different poultry products from raw products to cooked ones [13, 22, 2835]. Schäfer et al. (2018) reported the contamination rate of breast and thigh samples of chicken as 8.64 and 44.19%, respectively [36]. 12.7 % of turkey meat was positive for L. monocytogenes [37]. Table 2 shows the contamination rate of poultry meat and products with Listeria spp. and L. monocytogenes.

Table 2: Prevalence of Listeria spp. and L. monocytogenes in poultry meat and products.

According to Table 2, raw poultry meat and products were more contaminated with L. monocytogenes than cooked ones.

4.2. Serotypes of Listeria monocytogenes in Poultry

Serotypes 1/2b and 3b (serogroup IIb) of L. monocytogenes were the predominant isolated serotypes (52.77%) in chicken carcasses in Iran, and IVa serogroup which contains 4a and 4c serotypes also was detected in 27.77% of chicken carcasses [6]. The most common serotype in poultry products in the USA [38] was the same. But in another study, serotype 4b has been reported as the most common serotype in poultry products which was detected in 44.9% of the samples, while the prevalence of serotype 1/2b was 10.2% [33].

The prevalence of serogroup IVb was 2.77% and 12.5% in chicken carcasses [6] and RTE foods, respectively [14]. Human listeriosis is mainly caused by 1/2a, 1/2b, and 4b serovars of L. monocytogenes. However, 4b serotype was not commonly found in foods [6].

Fresh packed turkey meat samples were contaminated with L. monocytogenes serotypes as follows: 4b (or 4d, 4e) (51.4%), 1/2a (or 3a) (27.0%), and 1/2b (or 3b) (21.6%) [39]. However, serotype 4b was frequently isolated from turkey meat and legs, while 1/2b was prevalent in turkey breast samples [39].

About 16.66% of the chicken carcasses sampled in Iran were contaminated with serogroup IIa containing 1/2a, 3a, 1/2c, and 3c serotypes [6]. Another serological study on poultry products reported 1/2a serotype in 40.8% and 1/2c serotype in 4.08% of samples [33]. In other studies, 1/2a serotype was the predominant serotype in poultry products of Portugal and Estonia [40, 41], while in Finland 1/2c was the major one [42].The identified serogroups in RTE foods were 1/2a, 3a and 1/2c, 3c with the rate of 65.6% and 21.9%, respectively [14]. Based on the above studies, poultry meat is a potential source of pathogenic serotypes of L. monocytogenes.

4.3. Antimicrobial Susceptibility of Listeria monocytogenes

Listeria spp. are resistant to antimicrobial agents due to widespread mobile genetic elements and conjugative transposons [33]. Twelve out of 36 L. monocytogenes isolates were sensitive to 11 tested antimicrobial agents [22]. None of the isolates had resistance to ampicillin and vancomycin [22]. Some researchers observed resistance to ampicillin in L. monocytogenes isolates, but all of their isolates were sensitive to vancomycin [33]. Zeinali et al. (2017) observed resistance to erythromycin in 52.77% of L. monocytogenes isolates but, in another study, it was reported in 15.2% of the isolates [33]. 8 out of 23 of L. monocytogenes isolates had resistance to erythromycin [37]. Resistance to penicillin is a common finding in a number of studies [22, 33, 37, 43]. Moreover, high susceptibility of L. monocytogenes to ampicillin and penicillin is also reported [22, 27, 4446]. Tetracycline is an antimicrobial agent with frequent use in poultry farms and also the treatment of human’s infection. Resistance to this agent is always observed in L. monocytogenes [13, 22, 33, 47, 48]. A low number of isolates were resistant to gentamycin [22, 49]. Standard therapy of listeriosis is done by use of ampicillin or penicillin G together with an aminoglycoside such as gentamicin. The second line of treatment belongs to trimethoprim. Resistance to trimethoprim in L. monocytogenes contributes to the pIP823 plasmid. There is a high susceptibility to this agent among L. monocytogenes isolates from foods [22, 49]. Most of the L. monocytogenes isolates had multidrug resistance. Fortunately, they are mostly sensitive to commonly used antibiotics which were used to cure human listeriosis.

4.4. Typing of L. monocytogenes Isolates in Poultry

Isolates of the L. monocytogenes with the same RAPD cluster belonged to different serogroup [15, 5456]. Four different clusters were distinguished among 26 isolates of L. monocytogenes from chicken carcasses through RAPD analysis with three different primers, namely, OPM-01, HLWL 74, and D8635 [57]. These 26 isolates of L. monocytogenes had 16 antibiogram patterns [57].

L. monocytogenes isolates with similar pulse-types were classified in the same cluster in the RAPD assay. They were also clonally related [14]. Different laboratories used RAPD test for subtyping of L. monocytogenes isolates [14, 58], including isolates from different poultry processing plants [58, 59].

Several isolates of RTE foods were typed by RAPD, although they were indistinguishable by REP-PCR [14]. Twenty-eight isolates of L. monocytogenes from chicken meat had 27 RAPD types. They were resistant to three or more antimicrobial agents [60].

Fifteen isolates of L. monocytogenes from ducks had three antibiogram patterns, five RAPD clusters, and three singletons. So, RAPD had a higher power in distinguishing isolates [58].

Chicken and human isolates of L. monocytogenes were classified in five clusters in RAPD assay [54]. All human isolates were categorized in one cluster [54]. These isolates had different serogroup [54]. It was a common finding in other studies [15, 55, 56, 61]. It may be due to amplification of unspecific loci in RAPD test [15]. Most genetic similarities were seen among isolates which had common sampling area [54]. The same RAPD cluster was seen in some Lactobacillus strains from common source [62]. Discrimination power of RAPD test is higher than serotyping [54, 56]. Isolates in the same RAPD profile had different serotypes and were detected in different areas [15, 32, 54, 55, 63, 64].

29 isolates and 5 reference strains of L. monocytogenes were grouped into 4 clusters and 1 singleton by REP-PCR [65]. There was a high genetic diversity among isolates. According to Shi et al. (2015), isolates belonging to the same serotype and origin had the same cluster in REP-PCR. 15 isolates of L. monocytogenes from ducks and their environments were typed by RAPD and REP. They were categorized in 5 clusters and 3 singletons, and 2 clusters and 3 singletons, respectively. This finding proposed the suitability of these tools for discrimination of strains [58]. Soni et al. (2012) also observed that clinical isolates of L. monocytogenes had similar ERIC and REP fingerprints but are quite different from the water and milk isolates [47]. Oliveira et al. (2018) found 12 pulsotypes among 38 isolates of L. monocytogenes [17]. 40 isolates of L. monocytogenes produced 10 different fingerprint profiles in ERIC-PCR. Similar fingerprint were seen for isolates of the same sample, but there was two strains in one sample with different fingerprints [18]. L. monocytogenes had a high genetic diversity, and for good differentiation of isolates the use of at least two subtyping approaches is necessary.

5. Conclusion

In conclusion, from the food safety perspective, the presence of L. monocytogenes in the poultry meat and products is a multifaceted potential hazard. This is due to, firstly, some barbecued and fried foods based on chicken meat which may lead to the survival of L. monocytogenes in final products and, secondly, the presence of multidrug resistance isolates which transfer the antibiotic resistance to community. Also, some of the isolates were pathogenic serotypes that play a major role in human listeriosis outbreaks. Subtyping data revealed the heterogeneous nature of the L. monocytogenes isolates. RAPD, REP-PCR, and ERIC-PCR have a considerable discriminatory power and are cost effective and less tedious and time consuming.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

References

  1. D. Meloni, “Focusing on the main morphological and physiological characteristics of the food-borne pathogen Listeria monocytogenes,” Journal of Veterinary Science and Research, vol. 1, pp. 1-2, 2014. View at Google Scholar
  2. M. Doumith, C. Buchrieser, P. Glaser, C. Jacquet, and P. Martin, “Differentiation of the major Listeria monocytogenes serovars by multiplex PCR,” Journal of Clinical Microbiology, vol. 42, no. 8, pp. 3819–3822, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Colagiorgi, I. Bruini, P. A. Di Ciccio, E. Zanardi, S. Ghidini, and A. Ianieri, “Listeria monocytogenes Biofilms in the wonderland of food industry,” Pathogens, vol. 6, no. 3, p. e41, 2017. View at Google Scholar · View at Scopus
  4. D. Liu, M. L. Lawrence, A. J. Ainsworth, and F. W. Austin, “Toward an improved laboratory definition of Listeria monocytogenes virulence,” International Journal of Food Microbiology, vol. 118, no. 2, pp. 101–115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Liu, A. J. Ainsworth, F. W. Austin, and M. L. Lawrence, “Characterization of virulent and avirulent Listeria monocytogenes strains by PCR amplification of putative transcriptional regulator and internalin genes,” Journal of Medical Microbiology, vol. 52, no. 12, pp. 1065–1070, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Zeinali, A. Jamshidi, M. Bassami, and M. Rad, “Serogroup identification and Virulence gene characterization of Listeria monocytogenes isolated from chicken carcasses,” Iranian Journal of Veterinary Science and Technology, vol. 7, no. 2, pp. 9–19, 2015. View at Google Scholar
  7. C. Sabet, M. Lecuit, D. Cabanes, P. Cossart, and H. Bierne, “LPXTG protein InlJ, a newly identified internalin involved in Listeria monocytogenes virulence,” Infection and Immunity, vol. 73, no. 10, pp. 6912–6922, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Liu, M. L. Lawrence, F. W. Austin, and A. J. Ainsworth, “A multiplex PCR for species- and virulence-specific determination of Listeria monocytogenes,” Journal of Microbiological Methods, vol. 71, no. 2, pp. 133–140, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Liu, A. J. Ainsworth, F. W. Austin, and M. L. Lawrence, “Use of PCR primers derived from a putative transcriptional regulator gene for species-specific determination of Listeria monocytogenes,” International Journal of Food Microbiology, vol. 91, no. 3, pp. 297–304, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. FSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control), “The European union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012,” EFSA Journal, vol. 12, no. 2, 3547 pages, 2014. View at Publisher · View at Google Scholar
  11. World Health Organization (WHO), “Basic information on emerging infectious diseases (EIDs): listeriosis: what we should know,” http://www.searo.who.int/entity/emerging_diseases/Zoonoses_Listeriosis.pdf, 2013. View at Publisher · View at Google Scholar
  12. J. Denny and J. McLauchlin, “Human listeria monocytogenes infections in europe-an opportunity for improved european surveillance,” Euro Surveillance, vol. 13, pp. 80–82, 2008. View at Google Scholar
  13. T. M. Osaili, A. R. Alaboudi, and E. A. Nesiar, “Prevalence of Listeria spp. and antibiotic susceptibility of Listeria monocytogenes isolated from raw chicken and ready-to-eat chicken products in Jordan,” Food Control, vol. 22, no. 3-4, pp. 586–590, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Jamali and K. L. Thong, “Genotypic characterization and antimicrobial resistance of Listeria monocytogenes from ready-to-eat foods,” Food Control, vol. 44, pp. 1–6, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. L. M. Lawrence, J. Harvey, and A. Gilmour, “Development of a random amplification of polymorphic DNA typing method for Listeria monocytogenes,” Applied and Environmental Microbiology, vol. 59, no. 9, pp. 3117–3119, 1993. View at Google Scholar · View at Scopus
  16. D. Liu, “Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen,” Journal of Medical Microbiology, vol. 55, no. 6, pp. 645–659, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. T. S. Oliveira, L. M. Varjão, L. N. N. da Silva et al., “Listeria monocytogenes at chicken slaughterhouse: Occurrence, genetic relationship among isolates and evaluation of antimicrobial susceptibility,” Food Control, vol. 88, pp. 131–138, 2018. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Cufaoglu and N. D. Ayaz, “Listeria monocytogenes risk associated with chicken at slaughter and biocontrol with three new bacteriophages,” Journal of Food Safety, Article ID e12621, 2019. View at Google Scholar
  19. M. Chen, Q. Wu, J. Zhang, Z. Yan, and J. Wang, “Prevalence and characterization of Listeria monocytogenes isolated from retail-level ready-to-eat foods in South China,” Food Control, vol. 38, no. 1, pp. 1–7, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Di Cagno, G. Minervini, E. Sgarbi et al., “Comparison of phenotypic (Biolog System) and genotypic (random amplified polymorphic DNA-polymerase chain reaction, RAPD-PCR, and amplified fragment length polymorphism, AFLP) methods for typing Lactobacillus plantarum isolates from raw vegetables and fruits,” International Journal of Food Microbiology, vol. 143, no. 3, pp. 246–253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Dhama, A. K. Verma, S. Rajagunalan, A. Kumar, R. Tiwari, S. Chakraborty et al., “Listeria monocytogenes infection in poultry and its public health importance with special reference to food borne zoonoses,” Pakistan Journal of Biological Sciences, vol. 16, no. 7, pp. 301–308, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Zeinali, A. Jamshidi, M. Bassami, and M. Rad, “Isolation and identification of Listeria spp. in chicken carcasses marketed in northeast of Iran,” International Food Research Journal, vol. 24, no. 2, pp. 881–887, 2017. View at Google Scholar · View at Scopus
  23. M. Jalali and D. Abedi, “Prevalence of listeria species in food products in Isfahan, Iran,” International Journal of Food Microbiology, vol. 122, no. 3, pp. 336–340, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Chen, X. Luo, L. Jiang et al., “Molecular characteristics and virulence potential of Listeria monocytogenes isolates from Chinese food systems,” Food Microbiology, vol. 26, no. 1, pp. 103–111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Elmali, H. Y. Can, and H. Yaman, “Prevalence of listeria monocytogenes in poultry meat,” Food Science and Technology, vol. 35, no. 4, pp. 672–675, 2015. View at Publisher · View at Google Scholar · View at Scopus
  26. L. M. Lawrence and A. Gilmour, “Incidence of Listeria spp. and Listeria monocytogenes in a poultry processing environment and in poultry products and their rapid confirmation by multiplex PCR,” Applied and Environmental Microbiology, vol. 60, no. 12, pp. 4600–4604, 1994. View at Google Scholar · View at Scopus
  27. I. Sakaridis, N. Soultos, E. Iossifidou, A. Papa, I. Ambrosiadis, and P. Koidis, “Prevalence and antimicrobial resistance of Listeria monocytogenes isolated in chicken slaughterhouses in Northern Greece,” Journal of Food Protection, vol. 74, no. 6, pp. 1017–1021, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Gunasena, C. Kodikara, K. Ganepola, and S. Widanapathirana, “Occurrance of Listeria monocytogenes in food in Sri Lanka,” Journal of the National Science Foundation of Sri Lanka, vol. 23, pp. 107–114, 1995. View at Google Scholar
  29. M. Uyttendaele, P. De Troy, and J. Debevere, “Incidence of Salmonella, Campylobacter jejuni, Campylobacter coli, and Listeria monocytogenes in poultry carcasses and different types of poultry products for sale on the Belgian retail market,” Journal of Food Protection, vol. 62, no. 7, pp. 735–40, 1999. View at Google Scholar
  30. K. Kosek-Paszkowska, J. Bania, J. Bystroń, J. Molenda, and M. Czerw, “Occurrence of Listeria sp. in raw poultry meat and poultry meat products,” Bulletin of the Veterinary Institute in Pulawy, vol. 49, no. 2, pp. 219–222, 2005. View at Google Scholar · View at Scopus
  31. W. Van Nierop, A. G. Dusé, E. Marais et al., “Contamination of chicken carcasses in Gauteng, South Africa, by Salmonella, Listeria monocytogenes and Campylobacter,” International Journal of Food Microbiology, vol. 99, no. 1, pp. 1–6, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Atil, H. B. Ertas, and G. Ozbey, “Isolation and molecular characterization of Listeria spp. from animals, food and environmental samples,” Veterinarni Medicina, vol. 56, no. 8, pp. 386–394, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. A. A. Fallah, S. S. Saei-Dehkordi, M. Rahnama, H. Tahmasby, and M. Mahzounieh, “Prevalence and antimicrobial resistance patterns of Listeria species isolated from poultry products marketed in Iran,” Food Control, vol. 28, no. 2, pp. 327–332, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. S. G. Goh, C. H. Kuan, Y. Y. Loo, W. S. Chang, Y. L. Lye, P. Soopna et al., “Listeria monocytogenes in retailed raw chicken meat in Malaysia,” Poultry Science, vol. 91, no. 10, pp. 2686–2690, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. C. H. Kuan, S. G. Goh, Y. Y. Loo et al., “Prevalence and quantification of Listeria monocytogenes in chicken offal at the retail level in Malaysia,” Poultry Science, vol. 92, no. 6, pp. 1664–1669, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. D. F. Schäfer, J. Steffens, J. Barbosa et al., “Monitoring of contamination sources of Listeria monocytogenes in a poultry slaughterhouse,” LWT- Food Science and Technology, vol. 86, pp. 393–398, 2017. View at Publisher · View at Google Scholar · View at Scopus
  37. F. S. Bilir Ormanci, I. Erol, N. D. Ayaz, O. Iseri, and D. Sariguzel, “Immunomagnetic separation and PCR detection of Listeria monocytogenes in Turkey meat and antibiotic resistance of the isolates,” British Poultry Science, vol. 49, no. 5, pp. 560–565, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Zhang, E. Yeh, G. Hall, J. Cripe, A. A. Bhagwat, and J. Meng, “Characterization of Listeria monocytogenes isolated from retail foods,” International Journal of Food Microbiology, vol. 113, no. 1, pp. 47–53, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. I. Erol and N. D. Ayaz, “Serotype distribution of listeria monocytogenes isolated from Turkey meat by multiplex pcr in Turkey,” Journal of Food Safety, vol. 31, no. 2, pp. 149–153, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Praakle-Amin, M. L. Hänninen, and H. Korkeala, “Prevalence and genetic characterization of Listeria monocytogenes in retail broiler meat in Estonia,” Journal of Food Protection, vol. 69, pp. 436–440, 2006. View at Google Scholar
  41. M. M. Guerra, J. McLauchlin, and F. A. Bernardo, “Listeria in ready-to-eat and unprocessed foods produced in Portugal,” Food Microbiology, vol. 18, no. 4, pp. 423–429, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. M. K. Miettinen, L. Palmu, K. J. Björkroth, and H. Korkeala, “Prevalence of Listeria monocytogenes in broilers at the abattoir, processing plant, and retail level,” Journal of Food Protection, vol. 64, no. 7, pp. 994–999, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. N. D. Ayaz and I. Erol, “Relation between serotype distribution and antibiotic resistance profiles of listeria monocytogenes isolated from Ground Turkey,” Journal of Food Protection, vol. 73, no. 5, pp. 967–972, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. J. A. Davis and C. R. Jackson, “Comparative antimicrobial susceptibility of listeria monocytogenes, L. innocua, and L. welshimeri,” Microbial Drug Resistance, vol. 15, no. 1, pp. 27–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Alonso-Hernando, M. Prieto, C. García-Fernández, C. Alonso-Calleja, and R. Capita, “Increase over time in the prevalence of multiple antibiotic resistance among isolates of Listeria monocytogenes from poultry in Spain,” Food Control, vol. 23, no. 1, pp. 37–41, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Dhanashree, S. K. Otta, I. Karunasagar, W. Goebel, and I. Karunasagar, “Incidence of Listeria spp. in clinical and food samples in Mangalore, India,” Food Microbiology, vol. 20, no. 4, pp. 447–453, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. D. K. Soni, R. K. Singh, D. V. Singh, and S. K. Dubey, “Characterization of Listeria monocytogenes isolated from Ganges water, human clinical and milk samples at Varanasi, India,” Infection, Genetics and Evolution, vol. 14, no. 1, pp. 83–91, 2013. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Morvan, C. Moubareck, A. Leclercq et al., “Antimicrobial resistance of Listeria monocytogenes strains isolated from humans in France,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 6, pp. 2728–2731, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Conter, D. Paludi, E. Zanardi, S. Ghidini, A. Vergara, and A. Ianieri, “Characterization of antimicrobial resistance of foodborne Listeria monocytogenes,” International Journal of Food Microbiology, vol. 128, no. 3, pp. 497–500, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. X. Cao, Y. Wang, Y. Wang, and C. Ye, “Isolation and characterization of Listeria monocytogenes from the black-headed gull feces in Kunming, China,” Journal of Infection and Public Health, vol. 11, no. 1, pp. 59–63, 2018. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Antunes, C. Réu, J. C. Sousa, N. Pestana, and L. Peixe, “Incidence and susceptibility to antimicrobial agents of Listeria spp. and Listeria monocytogenes isolated from poultry carcasses in Porto, Portugal,” Journal of Food Protection, vol. 65, no. 12, pp. 1888–1893, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. B. Gudbjörnsdóttir, M.-L. Suihko, P. Gustavsson et al., “The incidence of Listeria monocytogenes in meat, poultry and seafood plants in the Nordic countries,” Food Microbiology, vol. 21, no. 2, pp. 217–225, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Kanarat, W. Jitnupong, and J. Sukhapesna, “Prevalence of Listeria monocytogenes in chicken production chain in Thailand,” Thai Journal of Veterinary Medicine, vol. 41, no. 2, pp. 155–161, 2011. View at Google Scholar · View at Scopus
  54. T. Zeinali, A. Jamshidi, M. Rad, and M. Bassami, “A comparison analysis of listeria monocytogenes isolates recovered from chicken carcasses and human by using RAPD PCR,” International Journal of Clinical and Experimental Medicine, vol. 8, no. 6, pp. 10152–10157, 2015. View at Google Scholar · View at Scopus
  55. R. Aurora, A. Prakash, and S. Prakash, “Genotypic characterization of Listeria monocytogenes isolated from milk and ready-to-eat indigenous milk products,” Food Control, vol. 20, no. 9, pp. 835–839, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. S.-I. Mazurier and K. Wernars, “Typing of Listeria strains by random amplification of polymorphic DNA,” Research in Microbiology, vol. 143, no. 5, pp. 499–505, 1992. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Zeinali, A. Jamshidi, M. Rad, and M. Bassami, “Analysis of antibiotic susceptibility profile and RAPD typing of listeria monocytogenes isolates,” Journal of Health Sciences and Technology, vol. 1, no. 1, pp. 11–16, 2017. View at Google Scholar
  58. F. Adzitey, G. R. Rahmat Ali, N. Huda, T. Cogan, and J. Corry, “Prevalence, antibiotic resistance and genetic diversity of Listeria monocytogenes isolated from ducks, their rearing and processing environments in Penang, Malaysia,” Food Control, vol. 32, no. 2, pp. 607–614, 2013. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Keeratipibul and P. Techaruwichit, “Tracking sources of Listeria contamination in a cooked chicken meat factory by PCR-RAPD-based DNA fingerprinting,” Food Control, vol. 27, no. 1, pp. 64–72, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. E. Purwati, S. Radu, A. Ismail, C. Y. Kqueen, and L. Maurice, “Characterization of Listeria monocytogenes isolated from chicken meat: evidence of conjugal transfer of plasmid-mediated resistance to antibiotic,” Journal of Animal And Veterinary Advances, vol. 2, no. 4, pp. 237–246, 2003. View at Google Scholar
  61. L. Cocolin, S. Stella, R. Nappi, E. Bozzetta, C. Cantoni, and G. Comi, “Analysis of PCR-based methods for characterization of Listeria monocytogenes strains isolated from different sources,” International Journal of Food Microbiology, vol. 103, no. 2, pp. 167–178, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. D. Corroler, I. Mangin, N. Desmasures, and M. Gueguen, “An ecological study of lactococci isolated from raw milk in the camembert cheese registered designation of origin area,” Applied and Environmental Microbiology, vol. 64, pp. 4729–4735, 1998. View at Google Scholar
  63. S. Park, J. Jung, S. Choi et al., “Molecular characterization of Listeria monocytogenes based on the PFGE and RAPD in Korea,” Advances in Microbiology, vol. 02, no. 04, pp. 605–616, 2012. View at Google Scholar
  64. L. M. Lawrence and A. Gilmour, “Characterization of Listeria monocytogenes isolated from poultry products and from the poultry-processing environment by random amplification of polymorphic dna and multilocus enzyme electrophoresis,” Applied and Environmental Microbiology, vol. 61, no. 6, pp. 2139–2144, 1995. View at Google Scholar
  65. W. Shi, W. Qingping, Z. Jumei, C. Moutong, and Y. Zéan, “Prevalence, antibiotic resistance and genetic diversity of Listeria monocytogenes isolated from retail ready-to-eat foods in China,” Food Control, vol. 47, pp. 340–347, 2015. View at Publisher · View at Google Scholar · View at Scopus