Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2013, Article ID 476748, 10 pages
http://dx.doi.org/10.1155/2013/476748
Research Article

Enzyme-Mediated Ring-Opening Polymerization of Pentadecalactone to Obtain Biodegradable Polymer for Fabrication of Scaffolds for Bone Tissue Engineering

1Institute of Macromolecular Compounds RAS Bolshoy Prospect 31, Saint Petersburg 199004, Russia
2Chemistry Department, Saint-Petersburg State University Peterhof, Universitetskii Prospect 26, Saint Petersburg 198504, Russia

Received 16 April 2013; Accepted 20 August 2013

Academic Editor: Marek Cypryk

Copyright © 2013 V. A. Korzhikov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Kobayashi and A. Makino, “Enzymatic polymer synthesis: an opportunity for green polymer chemistry,” Chemical Reviews, vol. 109, no. 11, pp. 5288–5353, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Feijen, “Biodegradable polymers for medical purpose,” in Polymeric Biomaterials, E. Piskin and A. S. Hoffman, Eds., pp. 62–77, Martinus Nijhoff Publishers, Dordrecht, The Netherlands, 1986. View at Google Scholar
  3. A.-C. Albertsson and I. K. Varma, “Recent developments in ring opening polymerization of lactones for biomedical applications,” Biomacromolecules, vol. 4, no. 6, pp. 1466–1486, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. T. H. Barrows, “Synthetic bioabsorbable polymers,” in High Performance Biomaterials, M. Szycher, Ed., pp. 243–257, Technomic Publishing, Lancaster, Pa, USA, 1991. View at Google Scholar
  5. M. Vert, “Bioresorbable polymers for temporary therapeutic applications,” Angewandte Makromolekulare Chemie, vol. 166, pp. 155–168, 1989. View at Google Scholar
  6. R. Y. Zhang and P. Ma, “Poly(alpha-hydroxyl acids) hydroxyapatite porous composites for bone tissue engineering. Preparation and morphology,” Journal of Biomedical Materials Research, vol. 44, pp. 446–455, 1999. View at Google Scholar
  7. J.-P. Puaux, I. Banu, I. Nagy, and G. Bozga, “A study of L-lactide ring-opening polymerization kinetics,” Macromolecular Symposia, vol. 259, pp. 318–326, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. R. F. Storey and J. W. Sherman, “Kinetics and mechanism of the stannous octoate-catalyzed bulk polymerization of ε-caprolactone,” Macromolecules, vol. 35, no. 5, pp. 1504–1512, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. H. von Schenck, M. Ryner, A.-C. Albertsson, and M. Svensson, “Ring-opening polymerization of lactones and lactides with Sn(IV) and Al(III) initiators,” Macromolecules, vol. 35, no. 5, pp. 1556–1562, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. R. R. Gowda and D. Chakraborty, “Zinc acetate as a catalyst for the bulk ring opening polymerization of cyclic esters and lactide,” Journal of Molecular Catalysis A, vol. 333, no. 1-2, pp. 167–172, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Wang, K. Liao, D. Quan, and Q. Wu, “Bulk ring-opening polymerization of lactides initiated by ferric alkoxides,” Macromolecules, vol. 38, no. 11, pp. 4611–4617, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. P. S. Umare, G. L. Tembe, K. V. Rao, U. S. Satpathy, and B. Trivedi, “Catalytic ring-opening polymerization of l-lactide by titanium biphenoxy-alkoxide initiators,” Journal of Molecular Catalysis A, vol. 268, no. 1-2, pp. 235–243, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Philippe, C. Olivier, and J. M. Raquez, Eds., Handbook of Ring-Opening Polymerization, WHILEY-VCH, Weinheim, Germany, 2009.
  14. S. Matsumura, “Enzymatic synthesis of polyesters via ring-opening polymerization,” Advances in Polymer Science, vol. 194, no. 1, pp. 95–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. A.-C. Albertsson and R. K. Srivastava, “Recent developments in enzyme-catalyzed ring-opening polymerization,” Advanced Drug Delivery Reviews, vol. 60, no. 9, pp. 1077–1093, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Matsumura, “Enzyme-catalyzed synthesis and chemical recycling of polyesters,” Macromolecular Bioscience, vol. 2, pp. 105–126, 2002. View at Google Scholar
  17. Y. Suzuki, S. Taguchi, T. Hisano, K. Toshima, S. Matsumura, and Y. Doi, “Correlation between structure of the lactones and substance specificity in enzyme-catalyzed polymerization for the synthesis of polyesters,” Biomacromolecules, vol. 4, no. 3, pp. 537–543, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Kobayashi, H. Uyama, S. Namekawa, and H. Hayakawa, “Enzymatic ring-opening polymerization and copolymerization of 8-octanolide by lipase catalyst,” Macromolecules, vol. 31, no. 17, pp. 5655–5659, 1998. View at Google Scholar · View at Scopus
  19. H. Uyama, K. Takeya, N. Hoshi, and S. Kobayashi, “Lipase-catalyzed ring-opening polymerization of 12-dodecanolide,” Macromolecules, vol. 28, no. 21, pp. 7046–7050, 1995. View at Google Scholar · View at Scopus
  20. S. Noda, N. Kamiya, M. Goto, and F. Nakashio, “Enzymatic polymerization catalyzed by surfactant-coated lipases in organic media,” Biotechnology Letters, vol. 19, no. 4, pp. 307–309, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Küllmer, H. Kikuchi, H. Uyama, and S. Kobayashi, “Lipase-catalyzed ring-opening polymerization of α-methyl-δ-valerolactone and α-methyl-ε-caprolactone,” Macromolecular Rapid Communications, vol. 19, no. 2, pp. 127–130, 1998. View at Google Scholar · View at Scopus
  22. C. Hedfors, E. Östmark, E. Malmström, K. Hult, and M. Martinelle, “Thiol end-functionalization of poly(-caprolactone), catalyzed by candida antarctica lipase B,” Macromolecules, vol. 38, no. 3, pp. 647–649, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Broze, P. M. Léfèbvre, R. Jérôme, and Ph. Teyssiè, “Block copolymerization of 3,3-dimethyl-2-oxetanone. 1. About the mechanism of α,α-disubstituted β-propiolactones block copolymerization,” Macromolecules, vol. 12, pp. 1047–1051, 1979. View at Google Scholar
  24. P. Dubois, P. Degée, R. Jérôme, and Ph. Teyssié, “Macromolecular engineering of polylactones and polylactides. 8. Ring-opening polymerization of ε-caprolactone initiated by primary amines and trialkylaluminum,” Macromolecules, vol. 25, no. 10, pp. 2614–2618, 1992. View at Google Scholar · View at Scopus
  25. H. Uyama and S. Kobayashi, “Enzyme-catalyzed polymerization to functional polymers,” Journal of Molecular Catalysis B, vol. 19-20, pp. 117–127, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Uyama, H. Kikuchi, and S. Kobayashi, “One-shot synthesis of polyester macromonomer by en-zymatic ring-opening polymerization of lactone in the presence of vinyl ester,” Chemistry Letters, vol. 11, pp. 1047–1048, 1995. View at Google Scholar
  27. S. N. Yoon and G. P. Tae, “Porous biodegradable polymeric scaffolds prepared by thermally in-duced phase separation,” Journal of Biomedical Materials Research, vol. 47, pp. 8–17, 1999. View at Google Scholar
  28. Y. Mei, A. Kumar, and R. A. Gross, “Probing water-temperature relationships for Lipase-catalyzed lactone ring-opening polymerizations,” Macromolecules, vol. 35, no. 14, pp. 5444–5448, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. C. S. Lee, M. T. Ru, M. Haake, J. S. Dordick, J. A. Reimer, and D. S. Clark, “Multinuclear NMR study of enzyme hydration in an organic solvent,” Biotechnology and Bioengineering, vol. 57, pp. 686–693, 1998. View at Google Scholar
  30. N. A. Turner and E. N. Vulfson, “At what temperature can enzymes maintain their catalytic activity?” Enzyme and Microbial Technology, vol. 27, no. 1-2, pp. 108–113, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Klibanov, “Why are enzymes less active in organic solvents than in water?” Trends in Biotechnology, vol. 15, no. 3, pp. 97–101, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Zhong, S. Schneiderbauer, P. J. Dijkstra, M. Westerhausen, and J. Feijen, “Fast and living ring-opening polymerization of L-lactide initiated with in-situ-generated calcium alkoxides,” Journal of Polymers and the Environment, vol. 9, no. 1, pp. 31–38, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Jing-Lei, Y. Ying-Ming, L. Yun-Jie, Z. Li-Ying, Z. Yong, and S. Qi, “Synthesis, characterization of homoleptic guanidino lanthanide complexes and their catalytic activity for the ring-opening polymerization of ε-caprolactone,” Journal of Organometallic Chemistry, vol. 689, no. 6, pp. 1019–1024, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Pamuła, P. Dobrzyński, M. Bero, and C. Paluszkiewicz, “Hydrolytic degradation of porous scaffolds for tissue engineering from terpolymer of L-lactide, ε-caprolactone and glycolide,” Journal of Molecular Structure, vol. 744–747, pp. 557–562, 2005. View at Publisher · View at Google Scholar · View at Scopus