Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2013 (2013), Article ID 621693, 17 pages
http://dx.doi.org/10.1155/2013/621693
Research Article

Application of IgG-Derived Natural Treg Epitopes (IgG Tregitopes) to Antigen-Specific Tolerance Induction in a Murine Model of Type 1 Diabetes

1EpiVax, Inc., 146 Clifford Street, Providence, RI 02903, USA
2University of Maryland School of Medicine, Baltimore, MD 21201, USA
3Alpert Medical School of Brown University, Providence, RI 02912, USA
4University of Massachusetts Medical School, Worcester, MA 01655, USA
5Uniformed Services University of Health Sciences (USUHS), Bethesda, MD 20814, USA

Received 9 October 2012; Revised 11 January 2013; Accepted 19 January 2013

Academic Editor: Åke Lernmark

Copyright © 2013 Leslie P. Cousens et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. A. Long, K. Cerosaletti, P. L. Bollyky et al., “Defects in IL-2R signaling contribute to diminished maintenance of FOXP3 expression in CD4+CD25+ regulatory T-cells of type 1 diabetic subjects,” Diabetes, vol. 59, no. 2, pp. 407–415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Bluestone and A. K. Abbas, “Natural versus adaptive regulatory T cells,” Nature Reviews Immunology, vol. 3, no. 3, pp. 253–257, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Battaglia and M. G. Roncarolo, “Immune intervention with T regulatory cells: past lessons and future perspectives for type 1 diabetes,” Seminars in Immunology, vol. 23, no. 3, pp. 182–194, 2011. View at Google Scholar
  4. I. Durinovic-Belló, S. Rosinger, J. A. Olson et al., “DRB1*0401-restricted human T cell clone specific for the major proinsulin73-90 epitope expresses a down-regulatory T helper 2 phenotype,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 31, pp. 11683–11688, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Sumida, T. Kato, T. Hasunuma, T. Maeda, K. Nishioka, and I. Matsumoto, “Regulatory T cell epitope recognized T cells from labial salivary glands of patients with Sjogren's syndrome,” Arthritis and Rheumatism, vol. 40, no. 12, pp. 2271–2273, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. A. S. De Groot, L. Moise, J. A. McMurry et al., “Activation of natural regulatory T cells by IgG Fc-derived peptide ‘Tregitopes’,” Blood, vol. 112, no. 8, pp. 3303–3311, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. S. Maddur, S. Othy, P. Hegde et al., “Immunomodulation by intravenous immunoglobulin: role of regulatory T cells,” Journal of Clinical Immunology, vol. 30, supplement 1, pp. S4–S8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Ephrem, S. Chamat, C. Miquel et al., “Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis,” Blood, vol. 111, no. 2, pp. 715–722, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Kolbus, M. Wigren, I. Ljungcrantz et al., “Immunization with cationized BSA inhibits progression of disease in ApoBec-1/LDL receptor deficient mice with manifest atherosclerosis,” Immunobiology, vol. 216, no. 6, pp. 663–669, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. Q. Tang and J. A. Bluestone, “The Foxp3+ regulatory T cell: a jack of all trades, master of regulation,” Nature Immunology, vol. 9, no. 3, pp. 239–244, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Baecher-Allan and D. A. Hafler, “Human regulatory T cells and their role in autoimmune disease,” Immunological Reviews, vol. 212, pp. 203–216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Moise, R. M. Buller, J. Schriewer et al., “VennVax, a DNA-prime, peptide-boost multi-T-cell epitope poxvirus vaccine, induces protective immunity against vaccinia infection by T cell response alone,” Vaccine, vol. 29, no. 3, pp. 501–511, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. F. Moss, L. Moise, D. S. Lee et al., “HelicoVax: epitope-based therapeutic Helicobacter pylori vaccination in a mouse model,” Vaccine, vol. 29, no. 11, pp. 2085–2091, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Sturniolo, E. Bono, J. Ding et al., “Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices,” Nature Biotechnology, vol. 17, no. 6, pp. 555–561, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. A. S. De Groot and W. Martin, “Reducing risk, improving outcomes: bioengineering less immunogenic protein therapeutics,” Clinical Immunology, vol. 131, no. 2, pp. 189–201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Southwood, J. Sidney, A. Kondo et al., “Several common HLA-DR types share largely overlapping peptide binding repertoires,” Journal of Immunology, vol. 160, no. 7, pp. 3363–3373, 1998. View at Google Scholar · View at Scopus
  17. L. Moise, J. A. McMurry, S. Buus, S. Frey, W. D. Martin, and A. S. De Groot, “In silico-accelerated identification of conserved and immunogenic variola/vaccinia T-cell epitopes,” Vaccine, vol. 27, no. 46, pp. 6471–6479, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. A. McMurry, S. H. Gregory, L. Moise, D. Rivera, S. Buus, and A. S. De Groot, “Diversity of Francisella tularensis Schu4 antigens recognized by T lymphocytes after natural infections in humans: identification of candidate epitopes for inclusion in a rationally designed tularemia vaccine,” Vaccine, vol. 25, no. 16, pp. 3179–3191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. S. H. Gregory, S. Mott, J. Phung et al., “Epitope-based vaccination against pneumonic tularemia,” Vaccine, vol. 27, no. 39, pp. 5299–5306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. C. A. Weber, P. J. Mehta, M. Ardito, L. Moise, B. Martin, and A. S. De Groot, “T cell epitope: friend or Foe? Immunogenicity of biologics in context,” Advanced Drug Delivery Reviews, vol. 61, no. 11, pp. 965–976, 2009. View at Google Scholar
  21. A. S. De Groot, B. M. Jesdale, E. Szu, J. R. Schafer, R. M. Chicz, and G. Deocampo, “An interactive web site providing major histocompatibility ligand predictions: application to HIV research,” AIDS Research and Human Retroviruses, vol. 13, no. 7, pp. 529–531, 1997. View at Google Scholar · View at Scopus
  22. A. S. De Groot, B. Jesdale, W. Martin et al., “Mapping cross-clade HIV-1 vaccine epitopes using a bioinformatics approach,” Vaccine, vol. 21, no. 27–30, pp. 4486–4504, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. T. P. Di Lorenzo, M. Peakman, and B. O. Roep, “Translational mini-review series on type 1 diabetes: systematic analysis of T cell epitopes in autoimmune diabetes,” Clinical and Experimental Immunology, vol. 148, no. 1, pp. 1–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Cohen, L. Moise, M. Ardito, W. Martin, and A. S. De Groot, “A method for individualizing the prediction of immunogenicity of protein vaccines and biologic therapeutics: individualized T cell epitope measure (iTEM),” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 961752, 7 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Elyaman, S. J. Khoury, D. W. Scott, and A. S. De Groot, “Potential application of tregitopes as immunomodulating agents In multiple sclerosis,” Neurology Research International, vol. 2011, Article ID 256460, 6 pages, 2011. View at Publisher · View at Google Scholar
  26. S. Makino, K. Kunimoto, and Y. Muraoka, “Breeding of a non-obese, diabetic strain of mice,” Experimental Animals, vol. 29, no. 1, pp. 1–13, 1980. View at Google Scholar · View at Scopus
  27. J. Skupsky, A. H. Zhang, Y. Su, and D. W. Scott, “B-cell-delivered gene therapy induces functional T regulatory cells and leads to a loss of antigen-specific effector cells,” Molecular Therapy, vol. 18, no. 8, pp. 1527–1535, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. C. Steere, W. Klitz, E. E. Drouin et al., “Antibiotic-refractory Lyme arthritis is associated with HLA-DR molecules that bind a Borrelia burgdorferi peptide,” Journal of Experimental Medicine, vol. 203, no. 4, pp. 961–971, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Öling, J. Marttila, J. Ilonen et al., “GAD65- and proinsulin-specific CD4+ T-cells detected by MHC class II tetramers in peripheral blood of type 1 diabetes patients and at-risk subjects,” Journal of Autoimmunity, vol. 25, no. 3, pp. 235–243, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Bresson and M. von Herrath, “Resuscitating adaptive Tregs with combination therapies?” Novartis Foundation Symposium, vol. 292, pp. 50–60, 2008. View at Google Scholar · View at Scopus
  31. S. van der Marel, A. Majowicz, K. Kwikkers et al., “Adeno-associated virus mediated delivery of Tregitope 167 ameliorates experimental colitis,” World Journal of Gastroenterology, vol. 18, no. 32, pp. 4288–4299, 2012. View at Google Scholar
  32. T. Brusko, C. Wasserfall, K. McGrail et al., “No alterations in the frequency of FOXP3+ regulatory T-cells in type 1 diabetes,” Diabetes, vol. 56, no. 3, pp. 604–612, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. L. S. Taams and A. N. Akbar, “Peripheral generation and function of CD4+CD25+ regulatory T cells,” Current Topics in Microbiology and Immunology, vol. 293, pp. 115–131, 2005. View at Google Scholar · View at Scopus
  34. L. S. Wicker, S. L. Chen, G. T. Nepom et al., “Naturally processed T cell epitopes from human glutamic acid decarboxylase identified using mice transgenic for the type 1 diabetes- associated human MHC class II allele, DRB1*0401,” The Journal of Clinical Investigation, vol. 98, no. 11, pp. 2597–2603, 1996. View at Google Scholar · View at Scopus
  35. J. Endl, H. Otto, G. Jung et al., “Identification of naturally processed T cell epitopes from glutamic acid decarboxylase presented in the context of HLA-DR alleles by T lymphocytes of recent onset IDDM patients,” The Journal of Clinical Investigation, vol. 99, no. 10, pp. 2405–2415, 1997. View at Google Scholar · View at Scopus
  36. A. S. De Groot, P. M. Knopf, and W. Martin, “De-immunization of therapeutic proteins by T-cell epitope modification,” Developmental Biology, vol. 122, pp. 171–194, 2005. View at Google Scholar
  37. S. Cernea, M. Dobreanu, and I. Raz, “Prevention of type 1 diabetes: today and tomorrow,” Diabetes/Metabolism Research and Reviews, vol. 26, no. 8, pp. 602–605, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Grinberg-Bleyer, A. Baeyens, S. You et al., “IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells,” Journal of Experimental Medicine, vol. 207, no. 9, pp. 1871–1878, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. L. P. Cousens, R. Tassone, B. D. Mazer, V. Ramachandiran, D. W. Scott, and A. S. De Groot, “Tregitope update: mechanism of action parallels IVIg,” Autoimmunity Reviews, vol. 12, no. 3, pp. 436–443, 2013. View at Google Scholar
  40. K. Hochweller, C. H. Sweenie, and S. M. Anderton, “Immunological tolerance using synthetic peptides—basic mechanisms and clinical application,” Current Molecular Medicine, vol. 6, no. 6, pp. 631–643, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Dotta, S. Censini, A. G. S. van Halteren et al., “Coxsackie B4 virus infection of β cells and natural killer cell insulitis in recent-onset type 1 diabetic patients,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 12, pp. 5115–5120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Lopez, M. R. Clarkson, M. Albin, M. H. Sayegh, and N. Najafian, “A novel mechanism of action for anti-thymocyte globulin: induction of CD4+CD25+Foxp3+ regulatory T cells,” Journal of the American Society of Nephrology, vol. 17, no. 10, pp. 2844–2853, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. L. J. Chi, H. B. Wang, Y. Zhang, and W. Z. Wang, “Abnormality of circulating CD4+CD25+ regulatory T cell in patients with Guillain-Barré syndrome,” Journal of Neuroimmunology, vol. 192, no. 1-2, pp. 206–214, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. A. H. Massoud, J. Guay, K. H. Shalaby et al., “Intravenous immunoglobulin attenuates airway inflammation through induction of forkhead box protein 3-positive regulatory T cells,” Journal of Allergy and Clinical Immunology, vol. 129, no. 6, pp. 1656.e3–1665.e3, 2012. View at Google Scholar
  45. B. H. Hahn, R. P. Singh, A. La Cava, and F. M. Ebling, “Tolerogenic treatment of lupus mice with consensus peptide induces Foxp3 -expressing, apoptosis-resistant, TGFβ-secreting CD8+ T cell suppressors,” Journal of Immunology, vol. 175, no. 11, pp. 7728–7737, 2005. View at Google Scholar · View at Scopus
  46. A. Sharabi, H. Zinger, M. Zborowsky, Z. M. Sthoeger, and E. Mozes, “A peptide based on the complementarity-determining region 1 of an autoantibody ameliorates lupus by up-regulating CD4+CD25+ cells and TGF-β,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 23, pp. 8810–8815, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Sharabi, M. Dayan, H. Zinger, and E. Mozes, “A new model of induced experimental systemic lupus erythematosus (SLE) in pigs and its amelioration by treatment with a tolerogenic peptide,” Journal of Clinical Immunology, vol. 30, no. 1, pp. 34–44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. L. P. Cousens, F. Mingozzi, S. van der Marel et al., “Teaching tolerance: new approaches to enzyme replacement therapy for Pompe disease,” Human Vaccines & Immunotherapeutics, vol. 8, no. 10, pp. 1459–1464, 2012. View at Google Scholar
  49. L. P. Cousens, N. Najafian, F. Mingozzi et al., “In vitro and in vivo studies of IgG-derived treg epitopes (Tregitopes): a promising new tool for tolerance induction and treatment of autoimmunity,” Journal of Clinical Immunology, vol. 33, supplement 1, pp. 43–49, 2012. View at Google Scholar