Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2013 (2013), Article ID 940710, 10 pages
Review Article

Foxp3+ Regulatory T Cells in Mouse Models of Type 1 Diabetes

1Center for Regenerative Therapies Dresden, 01307 Dresden, Germany
2Institute of Infection Immunology, TWINCORE/Centre for Experimental and Clinical Infection Research, 30625 Hanover, Germany
3Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD), 01307 Dresden, Germany

Received 21 December 2012; Accepted 3 February 2013

Academic Editor: Takahisa Yamada

Copyright © 2013 Cathleen Petzold et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Studies on human type 1 diabetes (T1D) are facilitated by the availability of animal models such as nonobese diabetic (NOD) mice that spontaneously develop autoimmune diabetes, as well as a variety of genetically engineered mouse models with reduced genetic and pathogenic complexity, as compared to the spontaneous NOD model. In recent years, increasing evidence has implicated CD4+CD25+ regulatory T (Treg) cells expressing the transcription factor Foxp3 in both the breakdown of self-tolerance and the restoration of immune homeostasis in T1D. In this paper, we provide an overview of currently available mouse models to study the role of Foxp3+ Treg cells in the control of destructive cell autoimmunity, including a novel NOD model that allows specific and temporally controlled deletion of Foxp3+ Treg cells.