About this Journal Submit a Manuscript Table of Contents
Journal of Food Quality
Volume 2017 (2017), Article ID 1076876, 7 pages
https://doi.org/10.1155/2017/1076876
Research Article

Determination of Polycyclic Aromatic Hydrocarbons in Tea Infusions Samples by High Performance Liquid Chromatography with Fluorimetric Detection

1Department of Chemistry, Sapienza University of Rome, P.le A.Moro 5, 00185 Rome, Italy
2Department of Management, Laboratory of Commodity Science, Sapienza University of Rome, Via Castro Laurenziano 9, 00161 Rome, Italy

Correspondence should be addressed to Anna Maria Girelli

Received 13 July 2016; Accepted 19 October 2016; Published 11 January 2017

Academic Editor: Elena González-Fandos

Copyright © 2017 Anna Maria Girelli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y.-C. Yang, F.-H. Lu, J.-S. Wu, C.-H. Wu, and C.-J. Chang, “The protective effect of habitual tea consumption on hypertension,” Archives of Internal Medicine, vol. 164, no. 14, pp. 1534–1540, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. S. K. Katiyar and K. Mukhtar, “Tea in chemoprevention of cancer: epidemiologic and experimental studies,” International Journal of Oncology, vol. 8, no. 2, pp. 221–238, 1996. View at Google Scholar · View at Scopus
  3. P. M. Kris-Etherton, K. D. Hecker, A. Bonanome, et al., “Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer,” The American Journal of Medicine, vol. 113, no. 9, supplement 2, pp. 71–88, 2002. View at Publisher · View at Google Scholar
  4. International Agency for Research on Cancer (IARC), Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Overall Evaluation of Carcinogenity: An Updating of IARC Monographs, vol. 1–42, supplement 7, International Agency for Research on Cancer, Lyon, France, 1987.
  5. Council of the European Union, “Commission Regulation (EU) No 835/2011 (19 August 2011) Amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs,” Official Journal of the European Union, vol. L 215/4, 2011. View at Google Scholar
  6. K. Ziegenhals, W. Jira, and K. Speer, “Polycyclic aromatic hydrocarbons (PAH) in various types of tea,” European Food Research and Technology, vol. 228, no. 1, pp. 83–91, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Lin and L. Zhu, “Polycyclic aromatic hydrocarbons: pollution and source analysis of a black tea,” Journal of Agricultural and Food Chemistry, vol. 52, no. 26, pp. 8268–8271, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. US and EPA, Polycyclic Organic Matter, Environmental Protection Agency, Washington, DC, USA, 2002, http://www.epa.gov/ttn/atw/hlthef/polycycl.html.
  9. H. Fiedler, C. K. Cheung, and M. H. Wong, “PCDD/PCDF, chlorinated pesticides and PAH in Chinese teas,” Chemosphere, vol. 46, no. 9-10, pp. 1429–1433, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Khiadani, M. Mehdi Amin, F. Momen Beik, A. Ebrahimi, M. Farhadkhani, and F. Mohammadi-Moghadam, “Determination of polycyclic aromatic hydrocarbons concentration in eight brands of black tea which are used more in Iran,” International Journal of Environmental Health Engineering, vol. 2, article 40, 2013. View at Google Scholar
  11. D. Lin, Y. Tu, and L. Zhu, “Concentrations and health risk of polycyclic aromatic hydrocarbons in tea,” Food and Chemical Toxicology, vol. 43, no. 1, pp. 41–48, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. G. V. A. Londoño, C. M. Reynoso, and S. L. Resnik, “Polycyclic aromatic hydrocarbons (PAHs) survey on tea (Camellia sinensis) commercialized in Argentina,” Food Control, vol. 50, pp. 31–37, 2015. View at Publisher · View at Google Scholar
  13. A. Afolabi, J. Angelica, W. Cara, C. Kevin, N. Thao, and A. S. Mahmoud, “Determination of polycyclic aromatic hydrocarbons in dry tea,” Journal of Environmental Science and Health, Part B, vol. 50, pp. 552–559, 2015. View at Google Scholar
  14. L. Drabova, J. Pulkrabova, K. Kalachova, M. Tomaniova, V. Kocourek, and J. Hajslova, “Rapid determination of polycyclic aromatic hydrocarbons (PAHs) in tea using two-dimensional gas chromatography coupled with time of flight mass spectrometry,” Talanta, vol. 100, pp. 207–216, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. M. N. Kayali-Sayadi, “Rapid determination of polycyclic aromatic hydrocarbons in tea infusion samples by high-performance liquid chromatography and fluorimetric detection based on solid-phase extraction,” Analyst, vol. 123, no. 10, pp. 2145–2148, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. N. R. Bishnoi, U. Mehta, U. Sain, and G. G. Pandit, “Quantification of polycyclic aromatic hydrocarbons in tea and coffee samples of Mumbai City (India) by high performance liquid chromatography,” Environmental Monitoring and Assessment, vol. 107, no. 1–3, pp. 399–406, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Pincemaille, C. Schummer, E. Heinen, and G. Moris, “Determination of polycyclic aromatic hydrocarbons in smoked and non-smoked black teas and tea infusions,” Food Chemistry, vol. 145, pp. 807–813, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Ciemniak and K. Mocek, “Polycyclic aromatic hydrocarbons in tea and tea infusions,” Roczniki Państwowego Zakładu Higieny, vol. 61, no. 3, pp. 243–248, 2010. View at Google Scholar · View at Scopus
  19. N. E. Díaz-Moroles, H. J. Garza-Ulloa, R. Castro-Ríos et al., “Comparison of the performance of two chromatographic and three extraction techniques for the analysis of PAHs in sources of drinking water,” Journal of Chromatographic Science, vol. 45, no. 2, pp. 57–62, 2007. View at Publisher · View at Google Scholar
  20. A. Filipkowska, L. Lubecki, and G. Kowalewska, “Polycyclic aromatic hydrocarbon analysis in different matrices of the marine environment,” Analytica Chimica Acta, vol. 547, no. 2, pp. 243–254, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. A. M. Girelli, D. Sperati, and A. M. Tarola, “Determination of polycyclic aromatic hydrocarbons in Italian milk by HPLC with fluorescence detection,” Food Additives and Contaminants Part A, vol. 31, no. 4, pp. 703–710, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. H. R. Falleh, M. Ksouri, E. Lucchessi, C. Abdelly, and C. Magné, “Ultrasound-assisted extraction: effect of extraction time and solvent power on the levels of polyphenols and antioxidant activity of Mesembryanthemum edule L. Aizoaceae shoots,” Tropical Journal of Pharmaceutical Research, vol. 11, pp. 243–249, 2012. View at Google Scholar
  23. J. L. Capelo Martinez, Ultrasound in Chemistry: Analytical Application, Wiley VCH Verlag GmbH & Co, KGA, Weinheim, Germany, 2009.
  24. The Council of the European Union, “Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption,” Official Journal of the European Communities, vol. 1, no. 330–332, 1998. View at Google Scholar
  25. D. Lin, L. Zhu, and L. Luo, “Factors affecting transfer of polycyclic aromatic hydrocarbons from made tea to tea infusion,” Journal of Agricultural and Food Chemistry, vol. 54, no. 12, pp. 4350–4354, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Kamangar, M. M. Schantz, C. C. Abnet, R. B. Fagundes, and S. M. Dawsey, “High levels of carcinogenic polycyclic aromatic hydrocarbons in mate drinks,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 5, pp. 1262–1268, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. G.-N. Lu, Z. Dang, X.-Q. Tao, C. Yang, and X.-Y. Yi, “Estimation of water solubility of polycyclic aromatic hydrocarbons using quantum chemical descriptors and partial least squares,” QSAR and Combinatorial Science, vol. 27, no. 5, pp. 618–626, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Mackay and K. E. Clark, “Predicting the environmental partitioning of organic contaminants and their transfer to biota,” in Organic Contaminants in the Environment: Environmental Pathways & Effects, K. C. Jones, Ed., vol. 19 of Environmental Management Series, pp. 159–188, Elsevier Applied Science Pubblishers, New York, NY, USA, 1991. View at Publisher · View at Google Scholar