Table of Contents Author Guidelines Submit a Manuscript
Journal of Food Quality
Volume 2017 (2017), Article ID 3075907, 8 pages
https://doi.org/10.1155/2017/3075907
Research Article

Antioxidant and Antimicrobial Properties of Cactus Pear (Opuntia) Seed Oils

1Academic Area of Nutrition, Health Sciences Institute, Autonomous University of Hidalgo State, 42160 Pachuca, HGO, Mexico
2Academic Area of Medicine, Autonomous University of Hidalgo State, Eliseo Ramírez Ulloa 400, 42090 Pachuca, HGO, Mexico
3Department of Food Hygiene, Faculty of Veterinary, Autonomous University of Barcelona, 08193 Bellaterra, Spain
4Academic Area of Chemistry, Basic Science and Engineering Institute, Autonomous University of Hidalgo State, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma, 42183 Pachuca, HGO, Mexico

Correspondence should be addressed to Nelly del Socorro Cruz-Cansino; xm.ude.heau@zurcn

Received 23 January 2017; Accepted 5 April 2017; Published 26 April 2017

Academic Editor: Andrea Lauková

Copyright © 2017 Esther Ramírez-Moreno et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. S. Kamel and Y. Kakuda, “Fatty acids in fruits and fruit products,” in Acids in Foods and Their Health Implications, pp. 263–301, CRC Press, 3rd edition, 2007. View at Google Scholar
  2. D. J. Murphy, I. Hernández-Pinzón, and K. Patel, “Role of lipid bodies and lipid-body proteins in seeds and other tissues,” Journal of Plant Physiology, vol. 158, no. 4, pp. 471–478, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Kedia, B. Prakash, P. K. Mishra, and N. K. Dubey, “Antifungal and antiaflatoxigenic properties of Cuminum cyminum (L.) seed essential oil and its efficacy as a preservative in stored commodities,” International Journal of Food Microbiology, vol. 168-169, pp. 1–7, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Singh, S. S. Das, G. Singh, C. Schuff, M. P. de Lampasona, and C. A. Catalán, “Composition, in vitro antioxidant and antimicrobial activities of essential oil and oleoresins obtained from black cumin seeds (Nigella sativa L.).,” BioMed Research International, vol. 2014, Article ID 918209, 10 pages, 2014. View at Publisher · View at Google Scholar
  5. M. H. H. Roby, M. A. Sarhan, K. A.-H. Selim, and K. I. Khalel, “Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.),” Industrial Crops and Products, vol. 44, pp. 437–445, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Kavoosi, A. Tafsiry, A. A. Ebdam, and V. Rowshan, “Evaluation of antioxidant and antimicrobial activities of essential oils from carum copticum seed and ferula assafoetida latex,” Journal of Food Science, vol. 78, no. 2, pp. T356–T361, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Lalas, O. Gortzi, V. Athanasiadis, J. Tsaknis, and I. Chinou, “Determination of antimicrobial activity and resistance to oxidation of Moringa peregrina seed oil,” Molecules, vol. 17, no. 3, pp. 2330–2334, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Ozcan, M. Esen, M. K. Sangun, A. Coleri, and M. Caliskan, “Effective antibacterial and antioxidant properties of methanolic extract of Laurus nobilis seed oil,” Journal of Environmental Biology, vol. 31, no. 5, pp. 637–641, 2010. View at Google Scholar
  9. R. S. Bhat and S. Al-daihan, “Antimicrobial activity of Litchi chinensis and Nephelium lappaceum aqueous seed extracts against some pathogenic bacterial strains,” Journal of King Saud University—Science, vol. 26, no. 1, pp. 79–82, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Silván, E. Mingo, M. Hidalgo, S. de Pascual-Teresa, A. V. Carrascosa, and A. J. Martinez-Rodriguez, “Antibacterial activity of a grape seed extract and its fractions against Campylobacter spp.,” Food Control, vol. 29, no. 1, pp. 25–31, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Rakholiya, M. Kaneria, D. Desai, and S. Chanda, “Antimicrobial activity of decoction extracts of residual parts (seed and peels) of Mangifera indica L. var. Kesar against pathogenic and food spoilage microorganism,” in Microbial pathogens and strategies for combating them: science, technology and education, A. Méndez-Vilas, Ed., vol. 2, pp. 850–856, 2013. View at Google Scholar
  12. N. A. Hasan, M. Z. Nawahwi, and H. Ab Malek, “Antimicrobial activity of Nigella sativa seed extract,” Sains Malaysiana, vol. 42, no. 2, pp. 143–147, 2013. View at Google Scholar
  13. Z. I. Sajid, F. Anwar, G. Shabir, G. Rasul, K. M. Alkharfy, and A.-H. Gilani, “Antioxidant, antimicrobial properties and phenolics of different solvent extracts from bark, leaves and seeds of Pongamia pinnata (L.) pierre,” Molecules, vol. 17, no. 4, pp. 3917–3932, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Khoobchandani, B. K. Ojeswi, N. Ganesh et al., “Antimicrobial properties and analytical profile of traditional Eruca sativa seed oil: comparison with various aerial and root plant extracts,” Food Chemistry, vol. 120, no. 1, pp. 217–224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Kesari, A. Das, and L. Rangan, “Physico-chemical characterization and antimicrobial activity from seed oil of Pongamia pinnata, a potential biofuel crop,” Biomass and Bioenergy, vol. 34, no. 1, pp. 108–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Carović-Stanko, S. Orlić, O. Politeo et al., “Composition and antibacterial activities of essential oils of seven Ocimum taxa,” Food Chemistry, vol. 119, no. 1, pp. 196–201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. M. Tajkarimi, S. A. Ibrahim, and D. O. Cliver, “Antimicrobial herb and spice compounds in food,” Food Control, vol. 21, no. 9, pp. 1199–1218, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Solórzano-Santos and M. G. Miranda-Novales, “Essential oils from aromatic herbs as antimicrobial agents,” Current Opinion in Biotechnology, vol. 23, no. 2, pp. 136–141, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Chougui, A. Tamendjari, W. Hamidj et al., “Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds,” Food Chemistry, vol. 139, no. 1–4, pp. 796–803, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Liu, Y.-J. Fu, Y.-G. Zu et al., “Supercritical carbon dioxide extraction of seed oil from Opuntia dillenii Haw. and its antioxidant activity,” Food Chemistry, vol. 114, no. 1, pp. 334–339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Matthäus and M. M. Özcan, “Habitat effects on yield, fatty acid composition and tocopherol contents of prickly pear (Opuntia ficus-indica L.) seed oils,” Scientia Horticulturae, vol. 131, pp. 95–98, 2011. View at Google Scholar
  22. P. Zito, M. Sajeva, M. Bruno, S. Rosselli, A. Maggio, and F. Senatore, “Essential oils composition of two Sicilian cultivars of Opuntia ficus-indica (L.) Mill. (Cactaceae) fruits (prickly pear),” Natural Product Research, vol. 27, no. 14, pp. 1305–1314, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Mobraten, T. M. Haug, C. R. Kleiveland, and T. Lea, “Omega-3 and omega-6 PUFAs induce the same GPR120-mediated signalling events, but with different kinetics and intensity in Caco-2 cells,” Lipids in Health and Disease, vol. 12, no. 1, Article ID 101, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Berraaouan, A. Ziyyat, H. Mekhfi et al., “Evaluation of antidiabetic properties of cactus pear seed oil in rats,” Pharmaceutical Biology, vol. 52, no. 10, pp. 1286–1290, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. F. J. Morales and S. Jiménez-Pérez, “Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence,” Food Chemistry, vol. 72, no. 1, pp. 119–125, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. P. R. Murray, E. J. Baron, M. A. Pfaller, F. C. Tenover, and R. H. Yolke, Manual of Clinical Microbiology, 1995, Washington, DC, USA.
  27. M. Ennouri, H. Fetoui, E. Bourret, N. Zeghal, and H. Attia, “Evaluation of some biological parameters of Opuntia ficus indica. 1. Influence of a seed oil supplemented diet on rats,” Bioresource Technology, vol. 97, no. 12, pp. 1382–1386, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Habibi, L. Heux, M. Mahrouz, and M. R. Vignon, “Morphological and structural study of seed pericarp of Opuntia ficus-indica prickly pear fruits,” Carbohydrate Polymers, vol. 72, no. 1, pp. 102–112, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Mouden, M. Boujnah, S. Salmaoui, S. Zantar, and A. Douira, “Effect of two extraction methods and harvest period and performance there statement of fatty oils of figs pear seed,” International Journal of Pure & Applied Bioscience, vol. 4, no. 1, pp. 1–8, 2016. View at Google Scholar
  30. A. El Finti, M. Belayadi, R. El Boullani, F. Msanda, and A. El Mousadik, “Assessment of some agro-technological parameters of cactus pear fruit (Opuntia ficus-indica Mill.) in Morocco cultivars,” Journal of Medicinal Plants Research, no. 7, pp. 2574–2583, 2013. View at Google Scholar
  31. S. Majdi, M. Barzegar, A. Jabbari, and M. Agha Alikhani, “Supercritical fluid extraction of tobacco seed oil and its comparison with solvent extraction methods,” Journal of Agricultural Science and Technology, vol. 14, no. 5, pp. 1043–1051, 2012. View at Google Scholar · View at Scopus
  32. E. M. Marinova and N. V. Yanishlieva, “Antioxidative activity of extracts from selected species of the family Lamiaceae in sunflower oil,” Food Chemistry, vol. 58, no. 3, pp. 245–248, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. Y.-Y. Soong and P. J. Barlow, “Antioxidant activity and phenolic content of selected fruit seeds,” Food Chemistry, vol. 88, no. 3, pp. 411–417, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. J. R. Soares, T. C. P. Dinis, A. P. Cunha, and L. M. Almeida, “Antioxidant activities of some extracts of Thymus zygis,” Free Radical Research, vol. 26, no. 5, pp. 469–478, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. İ. Gülçin, M. Oktay, E. Kireçci, and Ö. I. Küfrevioglu, “Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts,” Food Chemistry, vol. 83, pp. 371–382, 2003. View at Google Scholar
  36. J. Lee, H. Chung, P.-S. Chang, and J. Lee, “Development of a method predicting the oxidative stability of edible oils using 2,2-diphenyl-1-picrylhydrazyl (DPPH),” Food Chemistry, vol. 103, no. 2, pp. 662–669, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Fazio, P. Plastina, J. Meijerink, R. F. Witkamp, and B. Gabriele, “Comparative analyses of seeds of wild fruits of Rubus and Sambucus species from Southern Italy: fatty acid composition of the oil, total phenolic content, antioxidant and anti-inflammatory properties of the methanolic extracts,” Food Chemistry, vol. 140, no. 4, pp. 817–824, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. R. L. Prior, X. Wu, and K. Schaich, “Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements,” Journal of Agricultural and Food Chemistry, vol. 53, no. 10, pp. 4290–4302, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Cardador-Martínez, C. Jiménez-Martínez, and G. Sandoval, “Revalorization of cactus pear (Opuntia spp.) wastes as a source of antioxidants,” Ciencia e Tecnologia de Alimentos, vol. 31, no. 3, pp. 782–788, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. Ghazi, M. Ramdani, M. Tahri et al., “Chemical composition and antioxidant activity of seeds oils and fruit juice,” Journal of Materials and Environmental Science, vol. 6, no. 8, pp. 2338–2345, 2015. View at Google Scholar
  41. V. K. Bajpai, K.-H. Baek, and S. C. Kang, “Control of Salmonella in foods by using essential oils: a review,” Food Research International, vol. 45, no. 2, pp. 722–734, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Ziebell, R. P. Johnson, A. M. Kropinski et al., “Gene cluster conferring streptomycin, sulfonamide, and tetracycline resistance in Escherichia coli O157:H7 phage types 23, 45, and 67,” Applied and Environmental Microbiology, vol. 77, no. 5, pp. 1900–1903, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. O. Chandra, K. J. Putra, and I. Wayan, “Antibiotic resistance profiles of Escherichia coli O157:H7 in cattle at Suth-Kuta, Badung Regency. Bali, Indonesia.,” Global Veterinaria, vol. 15, no. 5, pp. 480–484, 2015. View at Google Scholar
  44. E. Moosazadeh, M. R. Akhgar, and A. Kariminik, “Chemical composition and antimicrobial activity of Opuntia stricta F. essential oil,” Journal of Biodiversity and Environmental Sciences, vol. 4, pp. 94–101, 2014. View at Google Scholar
  45. S. Burt, “Essential oils: their antibacterial properties and potential applications in foods - a review,” International Journal of Food Microbiology, vol. 94, no. 3, pp. 223–253, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Mnayer, A.-S. Fabiano-Tixier, E. Petitcolas et al., “Chemical composition, antibacterial and antioxidant activities of six essentials oils from the Alliaceae family,” Molecules, vol. 19, no. 12, pp. 20034–20053, 2014. View at Publisher · View at Google Scholar · View at Scopus
  47. A. O. Gill, P. Delaquis, P. Russo, and R. A. Holley, “Evaluation of antilisterial action of cilantro oil on vacuum packed ham,” International Journal of Food Microbiology, vol. 73, no. 1, pp. 83–92, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Turgis, K. D. Vu, C. Dupont, and M. Lacroix, “Combined antimicrobial effect of essential oils and bacteriocins against foodborne pathogens and food spoilage bacteria,” Food Research International, vol. 48, no. 2, pp. 696–702, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Zengin and A. H. Baysal, “Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy,” Molecules, vol. 19, no. 11, pp. 17773–17798, 2014. View at Publisher · View at Google Scholar · View at Scopus
  50. G. Tegos, F. R. Stermitz, O. Lomovskaya, and K. Lewis, “Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 10, pp. 3133–3141, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Baltazar, A. Ngandjio, K. E. Holt et al., “Multidrug-resistant Salmonella enterica serotype typhi, Gulf of Guinea Region, Africa,” Emerging Infectious Diseases, vol. 21, no. 4, pp. 655–659, 2015. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Oumato, S. Zrira, M. Boujnah, and B. Saidi, “Effect of maturity stage on morphological and chemical characteristics of Opuntia ficus indica from Morocco,” International Journal of Innovation and Applied Studies, vol. 20, no. 1, pp. 400–410, 2017. View at Google Scholar
  53. M. de Wit, A. Hugo, N. Shongwe, and R. van der Merwe, “Effect of cultivar, season and locality on lipid content and fatty acid composition of cactus pear seed oil,” South African Journal of Plant and Soil, no. 33, pp. 279–288, 2016. View at Publisher · View at Google Scholar · View at Scopus
  54. Australian Oilseeds Federation Incorporated 2015 Section 1, “Quality standards, technical information & typical analysis,” no. 14, pp. 31–40, 2016, (Accessed 1 November 2015). View at Google Scholar
  55. A. Awad, A. Adel, A. A. M., Nady, and A.A.E., “Wheat germ: an overview on nutritional value, antioxidant potential and antibacterial characteristics,” Food and Nutrition Sciences, vol. 6, no. 2, pp. 265–277, 2015. View at Google Scholar
  56. P. Pumrojana, S. Terapuntuwat, and P. Pakdee, “Influence of fatty acid composition of soybean oil vs. beef tallow on egg yolk fatty acid profiles of laying hens,” Pakistan Journal of Nutrition, vol. 14, no. 7, pp. 383–387, 2015. View at Publisher · View at Google Scholar · View at Scopus
  57. A. F. Cerón, M. O. Osorio, and B. A. Hurtado, “Identificación de ácidos grasos contenidos en los aceites extraídos a partir de semillas de tres diferentes especies de frutas,” Acta Agronómica, vol. 61, no. 2, pp. 126–132, 2012. View at Google Scholar
  58. J. Orsavova, L. Misurcova, J. Vavra Ambrozova, R. Vicha, and J. Mlcek, “Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids,” International Journal of Molecular Sciences, vol. 16, no. 6, pp. 12871–12890, 2015. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Derbali, A. Elaissi, I. Cheraief, and M. Aouni, “Fatty acid composition and antimicrobial activity against sensitive and multi-drug resistant bacteria of Tunisian Allium cepa seed extract,” Research & Reviews: Journal of Hospital and Clinical Pharmacy, vol. 2, no. 2, pp. 30–34, 2016. View at Google Scholar
  60. M. B. Suliman, A. H. Nour, M. M. Yusoff, P. Kuppusamy, A. R. Yuvaraj, and S. A. Mazza, “Fatty acid composition and antibacterial activity of Swietenia macrophylla king seed oil,” African Journal of Plant Science, vol. 7, no. 7, pp. 300–303, 2013. View at Google Scholar