Table of Contents Author Guidelines Submit a Manuscript
Journal of Food Quality
Volume 2018 (2018), Article ID 1639260, 15 pages
https://doi.org/10.1155/2018/1639260
Review Article

Shelf Life of Extra Virgin Olive Oil and Its Prediction Models

1University of California Davis Olive Center, Davis, CA 95616, USA
2Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA

Correspondence should be addressed to Selina C. Wang; ude.sivadcu@gnawcs

Received 26 October 2017; Accepted 2 January 2018; Published 31 January 2018

Academic Editor: Amani Taamalli

Copyright © 2018 Xueqi Li and Selina C. Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Teres, G. Barceló-Coblijn, M. Benet et al., “Oleic acid content is responsible for the reduction in blood pressure induced by olive oil,” Proceedings of the National Acadamy of Sciences of the United States of America, vol. 105, no. 37, pp. 13811–13816, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. R. W. Owen, A. Giacosa, W. E. Hull, R. Haubner, B. Spiegelhalder, and H. Bartsch, “The antioxidant/anticancer potential of phenolic compounds isolated from olive oil,” European Journal of Cancer, vol. 36, no. 10, pp. 1235–1247, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. H. L. Newmark, “Squalene, olive oil, and cancer risk: a review and hypothesis,” Cancer Epidemiology, Biomarkers & Prevention, vol. 6, no. 12, pp. 1101–1103, 1997. View at Google Scholar · View at Scopus
  4. R. Mateos, M. M. Domínguez, J. L. Espartero, and A. Cert, “Antioxidant Effect of Phenolic Compounds, α-Tocopherol, and Other Minor Components in Virgin Olive Oil,” Journal of Agricultural and Food Chemistry, vol. 51, no. 24, pp. 7170–7175, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Angerosa, R. Mostallino, C. Basti, and R. Vito, “Virgin olive oil odour notes: Their relationships with volatile compounds from the lipoxygenase pathway and secoiridoid compounds,” Food Chemistry, vol. 68, no. 3, pp. 283–287, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. A. M. Inarejos-García, S. Gómez-Alonso, G. Fregapane, and M. D. Salvador, “Evaluation of minor components, sensory characteristics and quality of virgin olive oil by near infrared (NIR) spectroscopy,” Food Research International, vol. 50, no. 1, pp. 250–258, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Angerosa, M. Servili, R. Selvaggini, A. Taticchi, S. Esposto, and G. Montedoro, “Volatile compounds in virgin olive oil: Occurrence and their relationship with the quality,” Journal of Chromatography A, vol. 1054, no. 1-2, pp. 17–31, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Fadiloglu and Z. Soylemez, “Kinetics of lipase-catalyzed hydrolysis of olive oil,” Food Research International, vol. 30, no. 3-4, pp. 171–175, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Frankel, Lipid Oxidation, Elsevier, 2014. View at Publisher · View at Google Scholar
  10. B. Zanoni, M. Bertuccioli, P. Rovellini, F. Marotta, and A. Mattei, “A preliminary approach to predictive modelling of extra virgin olive oil stability,” Journal of the Science of Food and Agriculture, vol. 85, no. 9, pp. 1492–1498, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Kiritsakis, G. D. Nanos, Z. Polymenopoulos, T. Thomai, and E. M. Sfakiotakis, “Effect of fruit storage conditions on olive oil quality,” Journal of the American Oil Chemists’ Society, vol. 75, no. 6, pp. 721–724, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Di Giovacchino, M. Solinas, and M. Miccoli, “Effect of extraction systems on the quality of virgin olive oil,” Journal of the American Oil Chemists' Society, vol. 71, no. 11, pp. 1189–1194, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Pristouri, A. Badeka, and M. G. Kontominas, “Effect of packaging material headspace, oxygen and light transmission, temperature and storage time on quality characteristics of extra virgin olive oil,” Food Control, vol. 21, no. 4, pp. 412–418, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Wang, X. Li, R. Rodrigues, and D. Flynn, Packaging Influences on Olive Oil Quality: A Review of The Literature, UC Davis Olive Center, 2014.
  15. X. Li, H. Zhu, C. F. Shoemaker, and S. C. Wang, “The effect of different cold storage conditions on the compositions of extra virgin olive oil,” Journal of the American Oil Chemists’ Society, vol. 91, no. 9, pp. 1559–1570, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Aparicio-Ruiz, M. Roca, and B. Gandul-Rojas, “Mathematical model to predict the formation of pyropheophytin a in virgin olive oil during storage,” Journal of Agricultural and Food Chemistry, vol. 60, no. 28, pp. 7040–7049, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Sinelli, M. S. Cosio, C. Gigliotti, and E. Casiraghi, “Preliminary study on application of mid infrared spectroscopy for the evaluation of the virgin olive oil "freshness",” Analytica Chimica Acta, vol. 598, no. 1, pp. 128–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Guillaume and L. Ravetti, “Shelf-Life Prediction of Extra Virgin Olive Oils Using an Empirical Model Based on Standard Quality Tests,” Journal of Chemistry, vol. 2016, Article ID 6393962, 2016. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Psomiadou, K. X. Karakostas, G. Blekas, M. Z. Tsimidou, and D. Boskou, “Proposed parameters for monitoring quality of virgin olive oil (Koroneiki cv),” European Journal of Lipid Science and Technology, vol. 105, no. 8, pp. 403–408, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Pagliarini, B. Zanoni, and G. Giovanelli, “Predictive study on tuscan extra virgin olive oil stability under several commercial conditions,” Journal of Agricultural and Food Chemistry, vol. 48, no. 4, pp. 1345–1351, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Nicoli, The Shelf Life Assessment Process, CRC Press, Boca Raton, Fla, USA, 2012.
  22. A. Kanavouras, P. Hernandez-Munoz, and F. A. Coutelieris, “Packaging of olive oil: quality issues and shelf life predictions,” Food Reviews International, vol. 22, no. 4, pp. 381–404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Mancebo-Campos, G. Fregapane, and M. D. Salvador, “Kinetic study for the development of an accelerated oxidative stability test to estimate virgin olive oil potential shelf life,” European Journal of Lipid Science and Technology, vol. 110, no. 10, pp. 969–976, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Kaya, A. R. Tekin, and M. D. Öner, “Oxidative stability of sunflower and olive oils: comparison between a modified active oxygen method and long term storage,” LWT- Food Science and Technology, vol. 26, no. 5, pp. 464–468, 1993. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Farhoosh and S.-Z. Hoseini-Yazdi, “Shelf-life prediction of olive oils using empirical models developed at low and high temperatures,” Food Chemistry, vol. 141, no. 1, pp. 557–565, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Kanavouras, P. Hernandez-Münoz, F. Coutelieris, and S. Selke, “Oxidation-derived flavor compounds as quality indicators for packaged olive oil,” Journal of the American Oil Chemists’ Society, vol. 81, no. 3, pp. 251–257, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Dabbou, I. Gharbi, S. Dabbou, F. Brahmi, A. Nakbi, and M. Hammami, “Impact of packaging material and storage time on olive oil quality,” African Journal of Biotechnology, vol. 10, no. 74, pp. 16937–16947, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. D. A. Tsimis and N. G. Karakasides, “How the choice of container affects olive oil quality - A review,” Packaging Technology and Science, vol. 15, no. 3, pp. 147–154, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Krichene, M. D. Salvador, and G. Fregapane, “Stability of virgin olive oil phenolic compounds during long-term storage (18 months) at temperatures of 5-50°C,” Journal of Agricultural and Food Chemistry, vol. 63, no. 30, pp. 6779–6786, 2015. View at Publisher · View at Google Scholar · View at Scopus
  30. A. I. Méndez and E. Falqué, “Effect of storage time and container type on the quality of extra-virgin olive oil,” Food Control, vol. 18, no. 5, pp. 521–529, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Rastrelli, S. Passi, F. Ippolito, G. Vacca, and F. de Simone, “Rate of degradation of α-tocopherol, squalene, phenolics, and polyunsaturated fatty acids in olive oil during different storage conditions,” Journal of Agricultural and Food Chemistry, vol. 50, no. 20, pp. 5566–5570, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. IOC, Trade Standard Applying to Olive Oils and Olive Pomace Oils, COI/T.15/NC No 3/Rev. 11, 2016.
  33. E. N. Frankel, “In search of better methods to evaluate natural antioxidants and oxidative stability in food lipids,” Trends in Food Science & Technology, vol. 4, no. 7, pp. 220–225, 1993. View at Publisher · View at Google Scholar · View at Scopus
  34. F. A. Coutelieris and A. Kanavouras, “Experimental and theoretical investigation of packaged olive oil: development of a quality indicator based on mathematical predictions,” Journal of Food Engineering, vol. 73, no. 1, pp. 85–92, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Gutiérrez and J. L. Fernández, “Determinant parameters and components in the storage of virgin olive oil. Prediction of storage time beyond which the oil is no longer of ‘extra’ quality,” Journal of Agricultural and Food Chemistry, vol. 50, no. 3, pp. 571–577, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Kanavouras and F. A. Coutelieris, “Shelf-life predictions for packaged olive oil based on simulations,” Food Chemistry, vol. 96, no. 1, pp. 48–55, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. M. B. Brown and A. B. Forsythe, “Robust tests for the equality of variances,” Journal of the American Statistical Association, vol. 69, no. 346, pp. 364–367, 1974. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Rodrigues, L. G. Dias, A. C. A. Veloso, J. A. Pereira, and A. M. Peres, “Evaluation of extra-virgin olive oils shelf life using an electronic tongue—chemometric approach,” European Food Research and Technology, vol. 243, no. 4, pp. 597–607, 2017. View at Publisher · View at Google Scholar · View at Scopus
  39. C. M. Kalua, M. S. Allen, D. R. Bedgood Jr., A. G. Bishop, P. D. Prenzler, and K. Robards, “Olive oil volatile compounds, flavour development and quality: a critical review,” Food Chemistry, vol. 100, no. 1, pp. 273–286, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. M. T. Morales, J. J. Rios, and R. Aparicio, “Changes in the volatile composition of virgin olive oil during oxidation: Flavors and Off-flavors,” Journal of Agricultural and Food Chemistry, vol. 45, no. 7, pp. 2666–2673, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Gómez-Alonso, V. Mancebo-Campos, M. D. Salvador, and G. Fregapane, “Evolution of major and minor components and oxidation indices of virgin olive oil during 21 months storage at room temperature,” Food Chemistry, vol. 100, no. 1, pp. 36–42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. S. A. Vekiari, P. Papadopoulou, and A. Koutsaftakis, “Comparison of different olive oil extraction systems and the effect of storage conditions on the quality of the virgin olive oil,” Grasas y Aceites, vol. 53, no. 3, pp. 324–329, 2002. View at Google Scholar · View at Scopus
  43. R. Farhoosh, “The effect of operational parameters of the Rancimat method on the determination of the oxidative stability measures and shelf-life prediction of soybean oil,” Journal of the American Oil Chemists’ Society, vol. 84, no. 3, pp. 205–209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Martín-Polvillo, T. Albi, and A. Guinda, “Determination of trace elements in edible vegetable oils by atomic absorption spectrophotometry,” Journal of the American Oil Chemists' Society, vol. 71, no. 4, pp. 347–353, 1994. View at Publisher · View at Google Scholar · View at Scopus
  45. S. J. Schwartz and J. H. Elbe, “Kinetics of Chlorophyll Degradation to Pyropheophytin in Vegetables,” Journal of Food Science, vol. 48, no. 4, pp. 1303–1306, 1983. View at Publisher · View at Google Scholar
  46. L. Gallardo-Guerrero, B. Gandul-Rojas, M. Roca, and M. I. Mínguez-Mosquera, “Effect of storage on the original pigment profile of Spanish virgin olive oil,” Journal of the American Oil Chemists’ Society, vol. 82, no. 1, pp. 33–39, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Aparicio-Ruiz, R. Aparicio, and D. L. García-González, “Does "best before" date embody extra-virgin olive oil freshness?” Journal of Agricultural and Food Chemistry, vol. 62, no. 3, pp. 554–556, 2014. View at Publisher · View at Google Scholar · View at Scopus
  48. M. O'Mahony, Sensory Evaluation Of Food: Statistical Methods and Procedures, CRC Press, Boca Raton, Fla, USA, 1986.
  49. A. J. Izenman, Modern Multivariate Statistical Techniques, Springer, New York, NY, USA, 2008. View at MathSciNet
  50. J. N. Miller and J. C. Miller, Statistics and Chemometrics for Analytical Chemistry, Pearson Education Limited, England, 2005.
  51. J. Cadima, J. O. Cerdeira, and M. Minhoto, “Computational aspects of algorithms for variable selection in the context of principal components,” Computational Statistics & Data Analysis, vol. 47, no. 2, pp. 225–236, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Kirkpatrick, J. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” American Association for the Advancement of Science: Science, vol. 220, no. 4598, pp. 671–680, 1983. View at Publisher · View at Google Scholar · View at MathSciNet
  53. D. Bertsimas and J. Tsitsiklis, “Simulated annealing,” Statistical Science, vol. 8, no. 1, pp. 10–15, 1993. View at Publisher · View at Google Scholar · View at Scopus
  54. L. G. Dias, A. Fernandes, A. C. A. Veloso, A. S. C. Machado, J. A. Pereira, and A. M. Peres, “Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue,” Food Chemistry, vol. 160, pp. 321–329, 2014. View at Publisher · View at Google Scholar
  55. J. M. Gutiérrez, Z. Haddi, A. Amari et al., “Hybrid electronic tongue based on multisensor data fusion for discrimination of beers,” Sensors and Actuators B: Chemical, vol. 177, pp. 989–996, 2013. View at Publisher · View at Google Scholar · View at Scopus
  56. R. W. Kennard and L. A. Stone, “Computer aided design of experiments,” Technometrics, vol. 11, no. 1, pp. 137–148, 1969. View at Publisher · View at Google Scholar
  57. M. Kuhn and K. Johnson, Applied Predictive Modeling, Springer, New York, NY, USA, 2013.
  58. W. N. Venables and B. D. Ripley, Modern Applied Statistics with S-PLUS, Springer Science & Business Media, New York, NY, USA, 2013. View at MathSciNet
  59. J. Ayton, R. Mailer, and K. Graham, The Effect of Storage Conditions on Extra Virgin Olive Oil Quality, Australian Government Rural Industries Research and Development Corporation, 2012.
  60. B. Lynch and A. Rozema, “Olive oil: conditions of competition between us and major foreign supplier industries,” United States International Trade Commission, Wash, USA, 2013. View at Google Scholar
  61. IOC, September market newsletter No 119, 2017.