Table of Contents Author Guidelines Submit a Manuscript
Journal of Food Quality
Volume 2018, Article ID 9141540, 6 pages
https://doi.org/10.1155/2018/9141540
Research Article

Effect of Temperature and Gamma Radiation on Salmonella Hadar Biofilm Production on Different Food Contact Surfaces

1Laboratoire de Biotechnologie et Techniques Nucléaires, Centre National des Sciences et Technologies Nucléaires, TechnoPole de Sidi Thabet, Sidi Thabet, Tunisia
2Laboratoire de Traitement et Valorisation des Rejets Hydriques, Centre des Recherches et des Technologies des Eaux (CERTE), Université de Carthage, Technopole Borj Cédria, BP 273, 8020 Soliman, Tunisia
3Laboratoire de Biochimie et de Biologie Moléculaire, Faculté des Sciences de Bizerte, Zarzouna, Tunisia
4CNRS, INRA, UMR 8207-UMET-PIHM, Université de Lille1, 369 rue Jules Guesde, CS 20039, 59651 Villeneuve d’Ascq, France

Correspondence should be addressed to Najla Ben Miloud Yahia; rf.oohay@duolimnebaljan

Received 11 December 2017; Accepted 20 February 2018; Published 28 March 2018

Academic Editor: Tomislava Vukušić

Copyright © 2018 Najla Ben Miloud Yahia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Prasanna, R. Monica, D. Umer, U. K. Asad, Y. Aixin et al., “Biofilms in endodontics—current status and future directions,” International Journal of Molecular Sciences, vol. 18, p. 1748, 2017. View at Publisher · View at Google Scholar
  2. R. A. Rohit, A. a. Henrik, R. Olena, B. Nicolas, R. B. David et al., “A multivariate approach to correlate bacterial surface properties to biofilm formation by lipopolysaccharide mutants of Pseudomonas aeruginosa,” Colloids and Surfaces B: Biointerfaces, vol. 127, pp. 182–191, 2015. View at Google Scholar
  3. L. Hu, C. J. Grim, A. A. Franco et al., “Analysis of the cellulose synthase operon genes, bcsA, bcsB, and bcsC in Cronobacter species: Prevalence among species and their roles in biofilm formation and cell-cell aggregation,” Food Microbiol, vol. 52, pp. 97–105, 2015. View at Publisher · View at Google Scholar
  4. S. Hans, H. Kim, V. Jos, and S. C. J. De Keersmaecker, “Salmonella biofilms: An overview on occurrence, structure, regulation and eradication,” Food Research International, vol. 45, pp. 502–531, 2015. View at Google Scholar
  5. I-M. Maricarmen, G-L. Melesio, G-M. Pedro, and A-N. María, “Biofilm formation by Staphylococcus aureus and Salmonella spp. Under mono and dual-species conditions and their sensitivity to cetrimonium bromide, peracetic acid and sodium hypochlorite,” Brazilian Journal of Microbiology, vol. 17, pp. 312–322, 2017. View at Google Scholar
  6. K. N. C. Maria, B. Elli, J. N. George, and G. Efstathios, “Differential Biofilm Formation and Chemical Disinfection Resistance of Sessile Cells of Listeria monocytogenes Strains under Monospecies and Dual-Species (with Salmonellaenterica) Conditions,” Applied and Environmental Microbiology, vol. 78, no. 8, pp. 2586–2595, 2012. View at Publisher · View at Google Scholar
  7. A. C. Rezende, M. C. Igarashi, M. T. Destro, D. G. M. F. Bernadette, and L. Mariza, “Effect of Gamma Radiation on the Reduction of Salmonella strains, Listeria monocytogenes, and Shiga Toxin-Producing Escherichia coli and Sensory Evaluation of Minimally Processed Spinach (Tetragoniaexpansa),” Journal of Food Protection®, vol. 10, pp. 1656–1833, 2014. View at Google Scholar
  8. D. H. Russell, J. H. Holly, A. Samina, and G. Geffrey, “Increased resistance to multiple antimicrobials and altered resistance gene expression in CMY-2-positive Salmonella enterica following a simulated patient treatment with ceftriaxone,” Applied and Environmental Microbiology, vol. 78, no. 22, pp. 8062–8066, 2012. View at Google Scholar
  9. N. Grantcharova, V. Peters, C. Monteiro, K. Zakikhany, and U. Römling, “Bistable expression of CsgD in biofilm development of Salmonella enterica serovar typhimurium,” Journal of Bacteriology, vol. 192, no. 2, pp. 456–466, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Čabarkapa, M. Škrinjar, J. Lević et al., “Biofilm forming ability of salmonella enteritidis in vitro,” Acta Veterinaria-Beograd, vol. 65, no. 3, pp. 371–389, 2015. View at Publisher · View at Google Scholar · View at Scopus
  11. M. A. K. K. P. Perera, “Irradiation as a non-destructive method of food preservation,” Journal of Nutritional Health Sciences, vol. 1, no. 3, 2017. View at Google Scholar
  12. K. A. An, Y. Jo, M. S. Arshad, G. R. Kim, C. Jo, and J. H. Kwon, “Assessment of microbial and radioactive contaminations in korean cold duck meats and electron beam application for quality improvement,” Journal of Nutritional Health Sciences, vol. 37, no. 2, pp. 297–304, 2017. View at Google Scholar
  13. N. Ben Miloud, A. Elmay, Chatti et al., “Etude de l'effet des radiations gamma sur la viabilité et l'expression différentielle de gènes chez Salmonella,” Microbiologie Hygiène Alimentaire, vol. 23, no. 68, pp. 10–15, 2011. View at Google Scholar
  14. A. R. Julie, B. Nidhi, Q. Jiang, Z. Weiling, and Cristina M. F., “Effects of ionizing radiation on biological molecules mechanisms of damage and emerging methods of detection,” Antioxid. Redox Signal, vol. 21, no. 2, pp. 260–292, 2013. View at Google Scholar
  15. S. Snoussi, A. E. May, L. Coquet, P. Chan, T. Jouenne et al., “Adaptation of Salmonella enterica Hadar under static magnetic field: Effects on outer membrane protein pattern,” Proteome Science, vol. 10, no. 6, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. W-M. Michal, S. Dana, Z. Yizhou, P. Riky, B. Eddy et al., “Biofilm formation by and multicellular behavior of escherichia coli o55:h7, an atypical enteropathogenic strain,” Applied and Environmental Microbiology, vol. 76, no. 5, pp. 1545–1554, 2010. View at Publisher · View at Google Scholar
  17. D. J. Freeman, F. R. Falkiner, and C. T. Keane, “New method for detecting slime production by coagulase negative staphylococci,” Journal of Clinical Pathology, vol. 42, no. 8, pp. 872–874, 1989. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Møretrø, H. Lene, L. H. Askild, S. S. Maan, R. Knut, and L. Solveig, “Biofilm formation and the presence of the intercellular adhesion locus ica among staphylococi from food and food processing environments,” Applied and Environmental Microbiology, vol. 69, no. 9, pp. 5648–5655, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. R. K. Agarwal, S. Singh, K. N. Bhilegaonkar, and V. P. Singh, “Optimization of microtitre plate assay for the testing of biofilm formation ability in different Salmonella serotypes,” International Food Research Journal, vol. 18, no. 4, pp. 1493–1498, 2011. View at Google Scholar · View at Scopus
  20. C. V. De Oliveira Débora, J. A. Fernandes, R. Kaneno, G. S. Márcia, J. J. P. Araújo et al., “Ability of Salmonella spp. to produce biofilm is dependent on temperature and surface material,” Foodborne Pathogens and Disease, vol. 11, no. 6, pp. 478–483, 2014. View at Publisher · View at Google Scholar
  21. C. Bintao, M. Peter, D. A. Smooker, M. Rouch, and A. Deighton, “Deighton. Selection of suitable reference genes for gene expression studies in Staphylococcus capitis during growth under erythromycin stress,” Molecular Genetics and Genomics, vol. 291, pp. 1795–1811, 2016. View at Google Scholar
  22. B. R. Anna Carolina, C. I. Maria, T. D. Maria, D. G. M. F. Bernadette, and L. Mariza, “Effect of Gamma Radiation on the Reduction of Salmonella strains, Listeria monocytogenes, and Shiga Toxin–Producing Escherichia coli and Sensory Evaluation of Minimally Processed Spinach (Tetragonia expansa),” Journal of Food Protection, vol. 77, no. 10, pp. 1768–1772, 2014. View at Publisher · View at Google Scholar
  23. B. E. Rangaswamy, K. P. Vanitha, and B. S. Hungund, “Microbial Cellulose Production from Bacteria Isolated from Rotten Fruit,” International Journal of Polymer Science, vol. 2015, Article ID 280784, 8 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Ch. Yassine, M. Sara, R. Christophe, A. Stephane, and H. Julie, “Characterisation of pellicles formed by acinetobacter baumannii at the air-liquid interface,” PLoS ONE, vol. 9, no. 10, Article ID e111660, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Basar, A. Nefise, and A. Mustafa, “Biofilm-producing abilities of Salmonella strains isolated from Turkey,” Biologia, vol. 68, no. 1, pp. 1–10, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Ebrahim, H. Azam, M. Reza, A. Seyed-Abdolhamid, and A. Nour, “Biofilm formation in clinical isolates of nosocomial Acinetobacter baumannii and its relationship with multidrug resistance,” Asian Pacific Journal of Tropical Biomedicine, vol. 6, no. 6, pp. 528–533, 2016. View at Publisher · View at Google Scholar · View at Scopus
  27. S. M. Dubravka, Z. P. Bojana, J. V. Maja, L. J. P. Marko, and S. Č. Ivana, “RDAR morpho type- a resting stage of some Enterobacteriaceae,” Food and Feed Research, vol. 42, no. 1, pp. 43–50, 2015. View at Publisher · View at Google Scholar
  28. K. C. Kalaivani, C. C. Lay, and L. T. Kwai, “Variations in motility and biofilm formation of Salmonella enterica serovar Typhi,” Gut Pathogens, vol. 6, no. 2, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. T. W. R. Chia, T. A. McMeekin, N. Fegan, and G. A. Dykes, “Significance of the rdar and bdar morphotypes in the hydrophobicity and attachment to abiotic surfaces of Salmonella Sofia and other poultry-associated Salmonella serovars,” Letters in Applied Microbiology, vol. 53, no. 5, pp. 581–584, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. G-G. Diego and P. Rafael, “Influence of environmental factors on bacterial biofilm formation in the food industry: a review,” PostDoc Journal, vol. 3, no. 6, 2015. View at Publisher · View at Google Scholar
  31. O. Kh. Simon, J. Charafeddine, A. Marwan, B. Rabah, and F. Christine, “Effect of incubation duration, growth temperature, and abiotic surface type on cell surface properties, adhesion and pathogenicity of biofilm-detached Staphylococcus aureus cells,” AMB, vol. 8, no. 9, pp. 3326–3346, 2017. View at Google Scholar
  32. M. Iñiguez-Moreno, M. Gutiérrez-Lomelí, P. J. Guerrero-Medina, and M. G. Avila-Novoa, “Biofilm formation by Staphylococcus aureus and Salmonella spp. under mono and dual-species conditions and their sensitivity to cetrimonium bromide, peracetic acid and sodium hypochlorite,” Brazilian Journal of Microbiology, 2017. View at Publisher · View at Google Scholar
  33. A. N. Alonso, M. Montesalvo, A. Rodriguez1, and P. M. Regan, “Effect of 60Co Irradiation on Biofilms Produced by SalmonellaEnterica,” Brazilian Journal of Microbiology, vol. 2, no. 1, pp. 63–69, 2016. View at Google Scholar
  34. L. Zhen, N. Hua, W. Shuyan, and H. Rui, “CsgD regulatory network in a bacterial trait-altering biofilm formation,” Emerging Microbes and Infections, vol. 3, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Zakikhany, C. R. Harrington, M. Nimtz, J. C. Hinton, and U. Römling, “Unphosphorylated CsgD controls biofilm formation in Salmonella enterica serovar Typhimurium,” Molecular Microbiology, vol. 77, no. 3, pp. 771–786, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Ben Abdallah, L. Rihab, S. Khaled, K. Héla, and G. Jawhar, “Detection of cell surface hydrophobicity, biofilm and fimbriae genes in Salmonella isolated from Tunisian clinical and Poultry meat,” Iranian Journal of Public Health, vol. 42, no. 4, pp. 423–431, 2014. View at Google Scholar