Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012 (2012), Article ID 398302, 17 pages
http://dx.doi.org/10.1155/2012/398302
Research Article

Pulmonary Toxicity, Distribution, and Clearance of Intratracheally Instilled Silicon Nanowires in Rats

1Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA
2T.J. Watson Research Center, IBM, Route 134, P.O. Box 218, Yorktown Heights, NY 10598, USA

Received 18 January 2012; Accepted 10 March 2012

Academic Editor: Ivo Iavicoli

Copyright © 2012 Jenny R. Roberts et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. NIOSH, “Approaches to Safe Nanotechnology: Managing the Health and Safety Concerns Associated with Engineered Nanomaterials (Pub. No. 2009-125),” Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, March 2009.
  2. K. Donaldson, F. Murphy, A. Schinwald, R. Duffin, and C. A. Poland, “Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety-by-design,” Nanomedicine, vol. 6, no. 1, pp. 143–153, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. D. B. Warheit, T. R. Webb, C. M. Sayes, V. L. Colvin, and K. L. Reed, “Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area,” Toxicological Sciences, vol. 91, no. 1, pp. 227–236, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. R. Roberts, R. S. Chapman, V. R. Tirumala et al., “Toxicological evaluation of lung responses after intratracheal exposure to non-dispersed titanium dioxide nanorods,” Journal of Toxicology and Environmental Health A, vol. 74, no. 12, pp. 790–810, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. R. F. Hamilton, N. Wu, D. Porter, M. Buford, M. Wolfarth, and A. Holian, “Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity,” Particle and Fibre Toxicology, vol. 6, article 35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. R. R. Mercer, A. F. Hubbs, J. F. Scabilloni et al., “Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes,” Particle and Fibre Toxicology, vol. 7, article 28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. E. J. Park, J. Roh, S. N. Kim et al., “A single intratracheal instillation of single-walled carbon nanotubes induced early lung fibrosis and subchronic tissue damage in mice,” Archives of Toxicology, pp. 1–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. D. W. Porter, A. F. Hubbs, R. R. Mercer et al., “Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes,” Toxicology, vol. 269, no. 2-3, pp. 136–147, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. R. Reddy, Y. N. Reddy, D. R. Krishna, and V. Himabindu, “Pulmonary toxicity assessment of multiwalled carbon nanotubes in rats following intratracheal instillation,” Environmental Toxicology, vol. 27, no. 4, pp. 211–219, 2012. View at Google Scholar
  10. J. P. Ryman-Rasmussen, M. F. Cesta, A. R. Brody et al., “Inhaled carbon nanotubes reach the subpleural tissue in mice,” Nature Nanotechnology, vol. 4, no. 11, pp. 747–751, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. A. Shvedova, E. R. Kisin, R. Mercer et al., “Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice,” American Journal of Physiology, vol. 289, no. 5, pp. L698–L708, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Shao, D. D. D. Ma, and S. T. Lee, “Silicon nanowires—synthesis, properties, and applications,” European Journal of Inorganic Chemistry, no. 27, pp. 4264–4278, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Zhang, R. Zou, L. Yu, and J. Hu, “Recent research on one-dimensional silicon-based semiconductor nanomaterials: synthesis, structures, properties, and applications,” Critical Reviews in Solid State and Materials Sciences, vol. 36, pp. 148–173, 2011. View at Google Scholar
  14. NIOSH, “NIOSH Pocket Guide to Chemical Hazards (Pub. No. 2005-149),” Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, September 2005.
  15. D. Napierska, L. C. J. Thomassen, D. Lison, J. A. Martens, and P. H. Hoet, “The nanosilica hazard: another variable entity,” Particle and Fibre Toxicology, vol. 7, article 39, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. K. S. Brammer, C. Choi, S. Oh et al., “Antibiofouling, sustained antibiotic release by Si nanowire templates,” Nano Letters, vol. 9, no. 10, pp. 3570–3574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Kim, J. K. Ng, M. E. Kunitake, B. R. Conklin, and P. Yang, “Interfacing silicon nanowires with mammalian cells,” Journal of the American Chemical Society, vol. 129, no. 23, pp. 7228–7229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. D. K. Nagesha, M. A. Whitehead, and J. L. Coffer, “Biorelevant calcification and non-cytotoxic behavior in silicon nanowires,” Advanced Materials, vol. 17, no. 7, pp. 921–924, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. S. J. Qi, C. Q. Yi, S. L. Ji, C. C. Fong, and M. S. Yang, “Cell adhesion and spreading behavior on vertically aligned silicon nanowire arrays,” American Chemical Society Materials and Interfaces, vol. 1, pp. 30–34, 2009. View at Google Scholar
  20. D. Porter, K. Sriram, M. Wolfarth et al., “A biocompatible medium for nanoparticle dispersion,” Nanotoxicology, vol. 2, no. 3, pp. 144–154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. E. I. Givargizov, Highly Anisotropic Crystals, Kluwer Academic Publishers, Norwell, Mass, USA, 1986.
  22. F. Patolsky, G. Zheng, and C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nature Protocols, vol. 1, no. 4, pp. 1711–1724, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. E. G. Janzen and B. J. Blackburn, “Detection and identification of short-lived free radicals by an electron spin resonance trapping technique,” Journal of the American Chemical Society, vol. 90, no. 21, pp. 5909–5910, 1968. View at Google Scholar · View at Scopus
  24. H. J. G. Gundersen, “Notes on the estimation of the numerical density of arbitrary profiles: the edge effect,” Journal of Microscopy, vol. 111, pp. 219–223, 1977. View at Google Scholar
  25. J. M. Antonini, K. Van Dyke, Z. Ye, M. DiMatteo, and M. J. Reasor, “Introduction of luminol-dependent chemiluminescence as a method to study silica inflammation in the issue and phagocytic cells of rat lung,” Environmental Health Perspectives, vol. 102, no. 10, pp. 37–42, 1994. View at Google Scholar · View at Scopus
  26. R. R. Mercer, J. Scabilloni, L. Wang et al., “Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model,” American Journal of Physiology, vol. 294, no. 1, pp. L87–L97, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. R. R. Mercer, M. L. Russell, and J. D. Crapo, “Alveolar septal structure in different species,” Journal of Applied Physiology, vol. 77, no. 3, pp. 1060–1066, 1994. View at Google Scholar · View at Scopus
  28. E. E. Underwood, Quantitative Stereology, Addison-Wesley, Reading, Mass, USA, 1970.
  29. A. E. Aust, P. M. Cook, and R. F. Dodson, “Morphological and chemical mechanisms of elongated mineral particle toxicities,” Journal of Toxicology and Environmental Health B, vol. 14, no. 1–4, pp. 40–75, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. B. T. Mossman, M. Lippmann, T. W. Hesterberg, K. T. Kelsey, A. Barchowsky, and J. C. Bonner, “Pulmonary endpoints (lung carcinomas and asbestosis) following inhalation exposure to asbestos,” Journal of Toxicology and Environmental Health B, vol. 14, no. 1–4, pp. 76–121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. V. C. Sanchez, J. R. Pietruska, N. R. Miselis, R. H. Hurt, and A. B. Kane, “Biopersistence and potential adverse health impacts of fibrous nanomaterials: what have we learned from asbestos?” Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, vol. 1, no. 5, pp. 511–529, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. D. B. Warheit, B. R. Laurence, K. L. Reed, D. H. Roach, G. A. M. Reynolds, and T. R. Webb, “Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats,” Toxicological Sciences, vol. 77, no. 1, pp. 117–125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Aiso, K. Yamazaki, Y. Umeda et al., “Pulmonary toxicity of intratracheally instilled multiwall carbon nanotubes in male fischer 344 rats,” Industrial Health, vol. 48, no. 6, pp. 783–795, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Kobayashi, M. Naya, M. Ema et al., “Biological response and morphological assessment of individually dispersed multi-wall carbon nanotubes in the lung after intratracheal instillation in rats,” Toxicology, vol. 276, no. 3, pp. 143–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. H. J. Johnston, G. R. Hutchison, F. M. Christensen et al., “A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics,” Nanotoxicology, vol. 4, no. 2, pp. 207–246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. F. A. Murphy, C. A. Poland, R. Duffin et al., “Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura,” American Journal of Pathology, vol. 178, no. 6, pp. 2587–2600, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. C. A. Poland, R. Duffin, I. Kinloch et al., “Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study,” Nature Nanotechnology, vol. 3, no. 7, pp. 423–428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. J. H. Sung, J. H. Ji, J. D. Park et al., “Subchronic inhalation toxicity of gold nanoparticles,” Particle and Fibre Toxicology, vol. 8, article 16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. I. Gosens, J. A. Post, L. J. J. de la Fonteyne et al., “Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation,” Particle and Fibre Toxicology, vol. 7, article 37, 2010. View at Publisher · View at Google Scholar · View at Scopus