Table of Contents Author Guidelines Submit a Manuscript
Journal of Toxicology
Volume 2012, Article ID 395482, 11 pages
http://dx.doi.org/10.1155/2012/395482
Research Article

Caspase-10 Is the Key Initiator Caspase Involved in Tributyltin-Mediated Apoptosis in Human Immune Cells

Department Materials Meet Life, Empa Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland

Received 24 May 2011; Accepted 27 September 2011

Academic Editor: Elke Dopp

Copyright © 2012 Harald F. Krug. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Oehlmann, B. Markert, E. Stroben, U. Schulte-Oehlmann, B. Bauer, and P. Fioroni, “Tributyltin biomonitoring using prosobranchs as sentinel organisms,” Analytical and Bioanalytical Chemistry, vol. 354, no. 5-6, pp. 540–545, 1996. View at Google Scholar · View at Scopus
  2. K. Békri and É. Pelletier, “Trophic transfer and in vivo immunotoxicological effects of tributyltin (TBT) in polar seastar Leptasterias polaris,” Aquatic Toxicology, vol. 66, no. 1, pp. 39–53, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. A. Berge, E. M. Brevik, A. Bjørge, N. Følsvik, G. W. Gabrielsen, and H. Wolkers, “Organotins in marine mammals and seabirds from Norwegian territory,” Journal of Environmental Monitoring, vol. 6, no. 2, pp. 108–112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Ciesielski, A. Wasik, I. Kuklik, K. Skóra, J. Namieśnik, and P. Szefer, “Organotin compounds in the liver tissue of marine mammals from the Polish coast of the Baltic Sea,” Environmental Science and Technology, vol. 38, no. 5, pp. 1415–1420, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Iwata, S. Tanabe, T. Mizuno, and R. Tatsukawa, “Bioaccumulation of butyltin compounds in marine mammals: the specific tissue distribution and composition,” Applied Organometallic Chemistry, vol. 11, no. 4, pp. 257–264, 1997. View at Google Scholar · View at Scopus
  6. H. Nakata, A. Sakakibara, M. Kanoh et al., “Evaluation of mitogen-induced responses in marine mammal and human lymphocytes by in-vitro exposure of butyltins and non-ortho coplanar PCBs,” Environmental Pollution, vol. 120, no. 2, pp. 245–253, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Følsvik, J. A. Berge, E. M. Brevik, and M. Walday, “Quantification of organotin compounds and determination of imposex in populations of dogwhelks (Nucella lapillus) from Norway,” Chemosphere, vol. 38, no. 3, pp. 681–691, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. U. Schulte-Oehlmann, M. Tillmann, B. Markert, J. Oehlmann, B. Watermann, and S. Scherf, “Effects of endocrine disruptors on prosobranch snails (mollusca: gastropoda) in the laboratory. Part II: triphenyltin as a xeno-androgen,” Ecotoxicology, vol. 9, no. 6, pp. 399–412, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Axiak, D. Micallef, J. Muscat, A. Vella, and B. Mintoff, “Imposex as a biomonitoring tool for marine pollution by tributyltin: some further observations,” Environment International, vol. 28, no. 8, pp. 743–749, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Yamabe, A. Hoshino, N. Imura, T. Suzuki, and S. Himeno, “Enhancement of androgen-dependent transcription and cell proliferation by tributyltin and triphenyltin in human prostate cancer cells,” Toxicology and Applied Pharmacology, vol. 169, no. 2, pp. 177–184, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Oberdörster and P. McClellan-Green, “Mechanisms of imposex induction in the mud snail, Ilyanassa obsoleta: TBT as a neurotoxin and aromatase inhibitor,” Marine Environmental Research, vol. 54, no. 3-5, pp. 715–718, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. M. M. Santos, C. C. Ten Hallers-Tjabbes, N. Vieira, J. P. Boon, and C. Porte, “Cytochrome P450 differences in normal and imposex-affected female whelk Buccinum undatum from the open North Sea,” Marine Environmental Research, vol. 54, no. 3-5, pp. 661–665, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Morcillo and C. Porte, “Evidence of endocrine disruption in the imposex-affected gastropod Bolinus brandaris,” Environmental Research, vol. 81, no. 4, pp. 349–354, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Y. Aw, P. Nicotera, L. Manzo, and S. Orrenius, “Tributyltin stimulates apoptosis in rat thymocytes,” Archives of Biochemistry and Biophysics, vol. 283, no. 1, pp. 46–50, 1990. View at Publisher · View at Google Scholar · View at Scopus
  15. N. J. Snoeij, A. H. Penninks, and W. Seinen, “Dibutyltin and tributyltin compounds induce thymus atrophy in rats due to a selective action on thymic lymphoblasts,” International Journal of Immunopharmacology, vol. 10, no. 7, pp. 891–899, 1988. View at Google Scholar · View at Scopus
  16. J. G. Vos and E. I. Krajnc, “Immunotoxicity of pesticides,” Developments in Toxicology and Environmental Science, vol. 11, pp. 229–240, 1983. View at Google Scholar
  17. S. Orrenius, M. J. McCabe, and P. Nicotera, “Ca2+-dependent mechanisms of cytotoxicity and programmed cell death,” Toxicology Letters, vol. 64-65, pp. 357–364, 1992. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Stridh, M. Kimland, D. P. Jones, S. Orrenius, and M. B. Hampton, “Cytochrome c release and caspase activation in hydrogen peroxide- and tributyltin-induced apoptosis,” FEBS Letters, vol. 429, no. 3, pp. 351–355, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Lavastre and D. Girard, “Tributyltin induces human neutrophil apoptosis and selective degradation of cytoskeletal proteins by caspases,” Journal of Toxicology and Environmental Health Part A, vol. 65, no. 14, pp. 1013–1024, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Nishikimi, Y. Kira, E. Kasahara et al., “Tributyltin interacts with mitochondria and induces cytochrome c release,” Biochemical Journal, vol. 356, no. 2, pp. 621–626, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Raffray, D. McCarthy, R. T. Snowden, and G. M. Cohen, “Apoptosis as a mechanism of tributyltin cytotoxicity to thymocytes: relationship of apoptotic markers to biochemical and cellular effects,” Toxicology and Applied Pharmacology, vol. 119, no. 1, pp. 122–130, 1993. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Reader, V. Moutardier, and F. Denizeau, “Tributyltin triggers apoptosis in trout hepatocytes: the role of Ca2+, protein kinase C and proteases,” Biochimica et Biophysica Acta, vol. 1448, no. 3, pp. 473–485, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Stridh, S. Orrenius, and M. B. Hampton, “Caspase involvement in the induction of apoptosis by the environmental toxicants tributyltin and triphenyltin,” Toxicology and Applied Pharmacology, vol. 156, no. 2, pp. 141–146, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Stridh, I. Cotgreave, M. Müller, S. Orrenius, and D. Gigliotti, “Organotin-induced caspase activation and apoptosis in human peripheral blood lymphocytes,” Chemical Research in Toxicology, vol. 14, no. 7, pp. 791–798, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. O. Yamanoshita, M. Kurasaki, T. Saito et al., “Diverse effect of tributyltin on apoptosis in PC12 cells,” Biochemical and Biophysical Research Communications, vol. 272, no. 2, pp. 557–562, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Umebayashi, Y. Oyama, L. Chikahisa-Muramastu et al., “Tri-n-butyltin-induced cytotoxicity on rat thymocytes in presence and absence of serum,” Toxicology in Vitro, vol. 18, no. 1, pp. 55–61, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Zaucke, H. Zöltzer, and H. F. Krug, “Dose-dependent induction of apoptosis or necrosis in human cells by organotin compounds,” Fresenius' Journal of Analytical Chemistry, vol. 361, no. 4, pp. 386–392, 1998. View at Google Scholar · View at Scopus
  28. M. Mičić, N. Bihari, Ž. Labura, W. E. G. Müller, and R. Batel, “Induction of apoptosis in the blue mussel Mytilus galloprovincialis by tri-n-butyltin chloride,” Aquatic Toxicology, vol. 55, no. 1-2, pp. 61–73, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Raffray and G. M. Cohen, “Thymocyte apoptosis as a mechanism for tributylin-induced thymic atrophy in vivo,” Archives of Toxicology, vol. 67, no. 4, pp. 231–236, 1993. View at Google Scholar · View at Scopus
  30. T. Ade, F. Zaucke, and H. F. Krug, “The structure of organometals determines cytotoxicity and alteration of calcium homeostasis in HL-60 cells,” Fresenius' Journal of Analytical Chemistry, vol. 354, no. 5-6, pp. 609–614, 1996. View at Google Scholar · View at Scopus
  31. S. C. Chow, G. E. N. Kass, M. J. McCabe, and S. Orrenius, “Tributyltin increases cytosolic free Ca2+ concentration in thymocytes by mobilizing intracellular Ca2+, activating a Ca2+ entry pathway, and inhibiting Ca2+ efflux,” Archives of Biochemistry and Biophysics, vol. 298, no. 1, pp. 143–149, 1992. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Gennari, B. Viviani, C. L. Galli, M. Marinovich, R. Pieters, and E. Corsini, “Organotins induce apoptosis by disturbance of [Ca2+]i and mitochondrial activity, causing oxidative stress and activation of caspases in rat thymocytes,” Toxicology and Applied Pharmacology, vol. 169, no. 2, pp. 185–190, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Stridh, D. Gigliotti, S. Orrenius, and I. Cotgreave, “The role of calcium in pre- and postmitochondrial events in tributyltin-induced T-cell apoptosis,” Biochemical and Biophysical Research Communications, vol. 266, no. 2, pp. 460–465, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Viviani, A. D. Rossi, S. C. Chow, and P. Nicotera, “Organotin compounds induce calcium overload and apoptosis in PC12 cells,” NeuroToxicology, vol. 16, no. 1, pp. 19–25, 1995. View at Google Scholar · View at Scopus
  35. L. Tiano, D. Fedeli, G. Santoni, I. Davies, and G. Falcioni, “Effect of tributyltin on trout blood cells: changes in mitochondrial morphology and functionality,” Biochimica et Biophysica Acta, vol. 1640, no. 2-3, pp. 105–112, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. C. P. Berg, A. Rothbart, K. Lauber et al., “Tributyltin (TBT) induces ultra-rapid caspase activation independent of apoptosome formation in human platelets,” Oncogene, vol. 22, no. 5, pp. 775–780, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Jurkiewicz, D. A. Averill-Bates, M. Marion, and F. Denizeau, “Involvement of mitochondrial and death receptor pathways in tributyltin-induced apoptosis in rat hepatocytes,” Biochimica et Biophysica Acta, vol. 1693, no. 1, pp. 15–27, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. H. F. Krug, P. C. Klohn, M. Gottlicher, and P. Herrlich, “Alkylated metal compounds mimic signal molecules: the induction of programmed cell death via membrane receptors,” Cellular & Molecular Biology Letters, vol. 6, no. 2A, pp. 406–407, 2001. View at Google Scholar
  39. H. F. Krug, “Metals in clinical medicine: the induction of apoptosis by metal compounds,” Materialwissenschaft und Werkstofftechnik, vol. 33, no. 12, pp. 770–774, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. N. N. Danial and S. J. Korsmeyer, “Cell death: critical control points,” Cell, vol. 116, no. 2, pp. 205–219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. F. C. Kischkel, S. Hellbardt, I. Behrmann et al., “Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor,” The EMBO Journal, vol. 14, no. 22, pp. 5579–5588, 1995. View at Google Scholar · View at Scopus
  42. C. Scaffidi, S. Fulda, A. Srinivasan et al., “Two CD95 (APO-1/Fas) signaling pathways,” The EMBO Journal, vol. 17, no. 6, pp. 1675–1687, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. S. C. Chow and S. Orrenius, “Rapid cytoskeleton modification in thymocytes induced by the immunotoxicant tributyltin,” Toxicology and Applied Pharmacology, vol. 127, no. 1, pp. 19–26, 1994. View at Publisher · View at Google Scholar · View at Scopus
  44. V. Gogvadze, H. Stridh, S. Orrenius, and I. Cotgreave, “Tributyltin causes cytochrome c release from isolated mitochondria by two discrete mechanisms,” Biochemical and Biophysical Research Communications, vol. 292, no. 4, pp. 904–908, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Zhang, Z. Zuo, Y. Wang, A. Yu, Y. Chen, and C. Wang, “Tributyltin chloride results in dorsal curvature in embryo development of Sebastiscus marmoratus via apoptosis pathway,” Chemosphere, vol. 82, no. 3, pp. 437–442, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Fumarola and G. G. Guidotti, “Stress-induced apoptosis: toward a symmetry with receptor-mediated cell death,” Apoptosis, vol. 9, no. 1, pp. 77–82, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Nopp, J. Lundahl, and H. Stridh, “Caspase activation in the absence of mitochondrial changes in granulocyte apoptosis,” Clinical and Experimental Immunology, vol. 128, no. 2, pp. 267–274, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Oberle, U. Massing, and H. F. Krug, “On the mechanism of alkylphosphocholine (APC)-induced apoptosis in tumour cells,” Biological Chemistry, vol. 386, no. 3, pp. 237–245, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. S. R. Pheng, S. Chakrabarti, and L. Lamontagne, “Dose-dependent apoptosis induced by low concentrations of methylmercury in murine splenic Fas+ T cell subsets,” Toxicology, vol. 149, no. 2-3, pp. 115–128, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. F. C. Kischkel, D. A. Lawrence, A. Tinel et al., “Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8,” The Journal of Biological Chemistry, vol. 276, no. 49, pp. 46639–46646, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. M. R. Sprick, E. Rieser, H. Stahl, A. Grosse-Wilde, M. A. Weigand, and H. Walczak, “Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8,” The EMBO Journal, vol. 21, no. 17, pp. 4520–4530, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. L. Meng, K. Sefah, M. B. O'Donoghue et al., “Silencing of PTK7 in colon cancer cells: caspase-10-dependent apoptosis via mitochondrial pathway,” PLoS One, vol. 5, no. 11, Article ID e14018, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. D. M. Conrad, S. J. Furlong, C. D. Doucette, K. A. West, and D. W. Hoskin, “The Ca2+ channel blocker flunarizine induces caspase-10-dependent apoptosis in Jurkat T-leukemia cells,” Apoptosis, vol. 15, no. 5, pp. 597–607, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Wachmann, C. Pop, B. J. van Raam et al., “Activation and specificity of human caspase-10,” Biochemistry, vol. 49, no. 38, pp. 8307–8315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Leist and M. Jäättelä, “Four deaths and a funeral: from caspases to alternative mechanisms,” Nature Reviews Molecular Cell Biology, vol. 2, no. 8, pp. 589–598, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Leist and M. Jäättelä, “Triggering of apoptosis by cathepsins,” Cell Death and Differentiation, vol. 8, no. 4, pp. 324–326, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. L. E. Bröker, F. A. E. Kruyt, and G. Giaccone, “Cell death independent of caspases: a review,” Clinical Cancer Research, vol. 11, no. 9, pp. 3155–3162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. R. H. H. Pieters, M. Bol, B. W. Lam, W. Seinen, and A. H. Penninks, “The organotin-induced thymus atrophy, characterized by depletion of CD4+CD8+ thymocytes, is preceded by a reduction of the immature CD4CD8+TcRαβ/lowCD2high thymoblast subset,” Immunology, vol. 76, no. 2, pp. 203–208, 1992. View at Google Scholar · View at Scopus
  59. R. S. Anderson, M. A. Unger, and E. M. Burreson, “Enhancement of Perkinsus marinus disease progression in TBT-exposed oysters (Crassostrea virginica),” Marine Environmental Research, vol. 42, no. 1-4, pp. 177–180, 1996. View at Publisher · View at Google Scholar · View at Scopus
  60. E. L. Cooper, V. Arizza, M. Cammarata, L. Pellerito, and N. Parrinello, “Tributyltin affects phagocytic activity of Ciona intestinalis hemocytes,” Comparative Biochemistry and Physiology Part C, vol. 112, no. 3, pp. 285–289, 1995. View at Publisher · View at Google Scholar
  61. H. J. Schuurman, H. van Loveren, J. Rozing, and J. G. Vos, “Chemicals trophic for the thymus: risk for immunodeficiency and autoimmunity,” International Journal of Immunopharmacology, vol. 14, no. 3, pp. 369–375, 1992. View at Publisher · View at Google Scholar · View at Scopus
  62. J. G. Vos, A. De Klerk, E. I. Krajnc, H. van Loveren, and J. Rozing, “Immunotoxicity of bis(tri-n-butyltin)oxide in the rat: effects on thymus-dependent immunity and on nonspecific resistance following long-term exposure in young versus aged rats,” Toxicology and Applied Pharmacology, vol. 105, no. 1, pp. 144–155, 1990. View at Publisher · View at Google Scholar · View at Scopus
  63. M. M. Whalen, S. A. Green, and B. G. Loganathan, “Brief butyltin exposure induces irreversible inhibition of the cytotoxic function on human natural killer cells, in vitro,” Environmental Research, vol. 88, no. 1, pp. 19–29, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. M. A. Champ, “A review of organotin regulatory strategies, pending actions, related costs and benefits,” Science of the Total Environment, vol. 258, no. 1-2, pp. 21–71, 2000. View at Publisher · View at Google Scholar · View at Scopus
  65. Commission Decision, “Council Directive 76/769/EEC regarding restrictions on the marketing and use of organostannic compounds,” 2009, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:138:0011:0013:EN:PDF. View at Google Scholar