Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2012, Article ID 353152, 11 pages
http://dx.doi.org/10.1155/2012/353152
Review Article

Molecular Hydrogen as an Emerging Therapeutic Medical Gas for Neurodegenerative and Other Diseases

1Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
2Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi 487-8501, Japan
3Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan

Received 11 January 2012; Revised 24 March 2012; Accepted 13 April 2012

Academic Editor: Marcos Dias Pereira

Copyright © 2012 Kinji Ohno et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, “Critical view of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/OH) in aqueous solution,” Journal of Physical and Chemical Reference Data, vol. 17, pp. 513–886, 1988. View at Google Scholar
  2. Y. Chuai, F. Gao, B. Li et al., “Hydrogen-rich saline attenuates radiation-induced male germ cell loss in mice through reducing hydroxyl radicals,” Biochemical Journal, vol. 442, pp. 49–56, 2012. View at Google Scholar
  3. V. Lafay, P. Barthelemy, B. Comet, Y. Frances, and Y. Jammes, “ECG changes during the experimental human dive HYDRA 10 (71 atm/7,200 kPa),” Undersea & Hyperbaric Medicine, vol. 22, no. 1, pp. 51–60, 1995. View at Google Scholar · View at Scopus
  4. B. Gharib, S. Hanna, O. M. S. Abdallahi, H. Lepidi, B. Gardette, and M. De Reggi, “Anti-inflammatory properties of molecular hydrogen: investigation on parasite-induced liver inflammation,” Comptes Rendus de l'Academie des Sciences—Serie III, vol. 324, no. 8, pp. 719–724, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. K. I. Fukuda, S. Asoh, M. Ishikawa, Y. Yamamoto, I. Ohsawa, and S. Ohta, “Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress,” Biochemical and Biophysical Research Communications, vol. 361, no. 3, pp. 670–674, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Ohsawa, M. Ishikawa, K. Takahashi et al., “Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals,” Nature Medicine, vol. 13, no. 6, pp. 688–694, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. C. S. Huang, T. Kawamura, Y. Toyoda, and A. Nakao, “Recent advances in hydrogen research as a therapeutic medical gas,” Free Radical Research, vol. 44, no. 9, pp. 971–982, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Ohta, “Recent progress toward hydrogen medicine: potential of molecular hydrogen for preventive and therapeutic applications,” Current Pharmaceutical Design, vol. 17, pp. 2241–2252, 2011. View at Google Scholar
  9. G. A. Matchett, N. Fathali, Y. Hasegawa et al., “Hydrogen gas is ineffective in moderate and severe neonatal hypoxia-ischemia rat models,” Brain Research, vol. 1259, pp. 90–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Cai, Z. Kang, W. W. Liu et al., “Hydrogen therapy reduces apoptosis in neonatal hypoxia-ischemia rat model,” Neuroscience Letters, vol. 441, no. 2, pp. 167–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Domoki, O. Oláh, A. Zimmermann et al., “Hydrogen is neuroprotective and preserves cerebrovascular reactivity in asphyxiated newborn pigs,” Pediatric Research, vol. 68, no. 5, pp. 387–392, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. M. Cai, Z. Kang, K. Liu et al., “Neuroprotective effects of hydrogen saline in neonatal hypoxia-ischemia rat model,” Brain Research, vol. 1256, pp. 129–137, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Fujita, Y. Tanaka, Y. Saihara et al., “Effect of molecular hydrogen saturated alkaline electrolyzed water on disuse muscle atrophy in gastrocnemius muscle,” Journal of Physiological Anthropology, vol. 30, pp. 195–201, 2011. View at Google Scholar
  14. Y. Saitoh, H. Okayasu, L. Xiao, Y. Harata, and N. Miwa, “Neutral pH hydrogen-enriched electrolyzed water achieves tumor-preferential clonal growth inhibition over normal cells and tumor invasion inhibition concurrently with intracellular oxidant repression,” Oncology Research, vol. 17, no. 6, pp. 247–255, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Ye, Y. Li, T. Hamasaki et al., “Inhibitory effect of electrolyzed reduced water on tumor angiogenesis,” Biological and Pharmaceutical Bulletin, vol. 31, no. 1, pp. 19–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Zhao, C. Zhou, J. Zhang et al., “Hydrogen protects mice from radiation induced thymic lymphoma in BALB/c mice,” International Journal of Biological Sciences, vol. 7, no. 3, pp. 297–300, 2011. View at Google Scholar · View at Scopus
  17. A. H. Schapira, “Mitochondria in the aetiology and pathogenesis of Parkinson's disease,” The Lancet Neurology, vol. 7, no. 1, pp. 97–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Fu, M. Ito, Y. Fujita et al., “Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson's disease,” Neuroscience Letters, vol. 453, no. 2, pp. 81–85, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Fujita, T. Seike, N. Yutsudo et al., “Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease,” PLoS ONE, vol. 4, no. 9, Article ID e7247, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Nakayama, H. Nakano, H. Hamada, N. Itami, R. Nakazawa, and S. Ito, “A novel bioactive haemodialysis system using dissolved dihydrogen (H2) produced by water electrolysis: a clinical trial,” Nephrology Dialysis Transplantation, vol. 25, no. 9, pp. 3026–3033, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Jucker and L. C. Walker, “Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders,” Annals of Neurology, vol. 70, pp. 532–540, 2011. View at Google Scholar
  22. K. Nagata, N. Nakashima-Kamimura, T. Mikami, I. Ohsawa, and S. Ohta, “Consumption of molecular hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice,” Neuropsychopharmacology, vol. 34, no. 2, pp. 501–508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Li, C. Wang, J. H. Zhang, J. M. Cai, Y. P. Cao, and X. J. Sun, “Hydrogen-rich saline improves memory function in a rat model of amyloid-beta-induced Alzheimer's disease by reduction of oxidative stress,” Brain Research, vol. 1328, pp. 152–161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Wang, J. Li, Q. Liu et al., “Hydrogen-rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF-κB activation in a rat model of amyloid-beta-induced Alzheimer's disease,” Neuroscience Letters, vol. 491, no. 2, pp. 127–132, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Gu, C. S. Huang, T. Inoue et al., “Drinking hydrogen water ameliorated cognitive impairment in senescence-accelerated mice,” Journal of Clinical Biochemistry and Nutrition, vol. 46, no. 3, pp. 269–276, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Kajiyama, G. Hasegawa, M. Asano et al., “Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance,” Nutrition Research, vol. 28, no. 3, pp. 137–143, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Nakao, Y. Toyoda, P. Sharma, M. Evans, and N. Guthrie, “Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome—an open label pilot study,” Journal of Clinical Biochemistry and Nutrition, vol. 46, no. 2, pp. 140–149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Nakayama, S. Kabayama, H. Nakano et al., “Biological effects of electrolyzed water in hemodialysis,” Nephron, vol. 112, no. 1, pp. C9–C15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Ito, T. Ibi, K. Sahashi, M. Ichihara, and K. Ohno, “Open-label trial and randomized, double-blind, placebo-controlled, crossover trial of hydrogen-enriched water for mitochondrial and inflammatory myopathies,” Medical Gas Research, vol. 1, article 24, 2011. View at Google Scholar
  30. H. Ono, Y. Nishijima, N. Adachi et al., “Improved brain MRI indices in the acute brain stem infarct sites treated with hydroxyl radical scavengers, Edaravone and hydrogen, as compared to Edaravone alone. A non-controlled study,” Medical Gas Research, vol. 1, article 12, 2011. View at Publisher · View at Google Scholar
  31. K. M. Kang, Y. N. Kang, I. B. Choi et al., “Effects of drinking hydrogen-rich water on the quality of life of patients treated with radiotherapy for liver tumors,” Medical Gas Research, vol. 1, article 11, 2011. View at Google Scholar
  32. Y. Li, T. Hamasaki, N. Nakamichi et al., “Suppressive effects of electrolyzed reduced water on alloxan-induced apoptosis and type 1 diabetes mellitus,” Cytotechnology, vol. 63, no. 2, pp. 119–131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Kamimura, K. Nishimaki, I. Ohsawa, and S. Ohta, “Molecular hydrogen improves obesity and diabetes by inducing hepatic FGF21 and stimulating energy metabolism in db/db mice,” Obesity, vol. 19, no. 7, pp. 1396–1403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. C. H. Chen, A. Manaenko, Y. Zhan et al., “Hydrogen gas reduced acute hyperglycemia-enhanced hemorrhagic transformation in a focal ischemia rat model,” Neuroscience, vol. 169, no. 1, pp. 402–414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Yu, Z. Wang, X. Sun et al., “Hydrogen-rich medium protects human skin fibroblasts from high glucose or mannitol induced oxidative damage,” Biochemical and Biophysical Research Communications, vol. 409, no. 2, pp. 350–355, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Zhang, Q. Sun, B. He, J. Xiao, Z. Wang, and X. Sun, “Anti-inflammatory effect of hydrogen-rich saline in a rat model of regional myocardial ischemia and reperfusion,” International Journal of Cardiology, vol. 148, no. 1, pp. 91–95, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. W. J. Zhu, M. Nakayama, T. Mori et al., “Intake of water with high levels of dissolved hydrogen (H2) suppresses ischemia-induced cardio-renal injury in Dahl salt-sensitive rats,” Nephrology Dialysis Transplantation, vol. 26, no. 7, pp. 2112–2118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Hanaoka, N. Kamimura, T. Yokota, S. Takai, and S. Ohta, “Molecular hydrogen protects chondrocytes from oxidative stress and indirectly alters gene expressions through reducing peroxynitrite derived from nitric oxide,” Medical Gas Research, vol. 1, article 18, 2011. View at Google Scholar
  39. D. D. Thomas, L. A. Ridnour, J. S. Isenberg et al., “The chemical biology of nitric oxide: implications in cellular signaling,” Free Radical Biology and Medicine, vol. 45, no. 1, pp. 18–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Nakai, B. Sato, S. Ushiama, S. Okada, K. Abe, and S. Arai, “Hepatic oxidoreduction-related genes are upregulated by administration of hydrogen-saturated drinking water,” Bioscience, Biotechnology and Biochemistry, vol. 75, no. 4, pp. 774–776, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. B. M. Buchholz, D. J. Kaczorowski, R. Sugimoto et al., “Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury,” American Journal of Transplantation, vol. 8, no. 10, pp. 2015–2024, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Kajiya, M. J. B. Silva, K. Sato, K. Ouhara, and T. Kawai, “Hydrogen mediates suppression of colon inflammation induced by dextran sodium sulfate,” Biochemical and Biophysical Research Communications, vol. 386, no. 1, pp. 11–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Kajiya, K. Sato, M. J. B. Silva et al., “Hydrogen from intestinal bacteria is protective for Concanavalin A-induced hepatitis,” Biochemical and Biophysical Research Communications, vol. 386, no. 2, pp. 316–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. F. Mao, X. F. Zheng, J. M. Cai et al., “Hydrogen-rich saline reduces lung injury induced by intestinal ischemia/reperfusion in rats,” Biochemical and Biophysical Research Communications, vol. 381, no. 4, pp. 602–605, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. X. Zheng, Y. Mao, J. Cai et al., “Hydrogen-rich saline protects against intestinal ischemia/reperfusion injury in rats,” Free Radical Research, vol. 43, no. 5, pp. 478–484, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Nakao, D. J. Kaczorowski, Y. Wang et al., “Amelioration of rat cardiac cold ischemia/reperfusion injury with inhaled hydrogen or carbon monoxide, or both,” Journal of Heart and Lung Transplantation, vol. 29, no. 5, pp. 544–553, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. Q. Liu, W. F. Shen, H. Y. Sun et al., “Hydrogen-rich saline protects against liver injury in rats with obstructive jaundice,” Liver International, vol. 30, no. 7, pp. 958–968, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Hayashi, T. Yoshioka, K. Hasegawa et al., “Inhalation of hydrogen gas attenuates left ventricular remodeling induced by intermittent hypoxia in mice,” American Journal of Physiology, vol. 301, pp. H1062–H1069, 2011. View at Google Scholar
  49. K. S. Yoon, X. Z. Huang, Y. S. Yoon et al., “Histological study on the effect of electrolyzed reduced water-bathing on UVB radiation-induced skin injury in hairless mice,” Biological and Pharmaceutical Bulletin, vol. 34, pp. 1671–1677, 2011. View at Google Scholar
  50. G. Song, H. Tian, J. Liu, H. Zhang, X. Sun, and S. Qin, “H2 inhibits TNF-α-induced lectin-like oxidized LDL receptor-1 expression by inhibiting nuclear factor κB activation in endothelial cells,” Biotechnology Letters, vol. 33, no. 9, pp. 1715–1722, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Huang, K. Xie, J. Li et al., “Beneficial effects of hydrogen gas against spinal cord ischemia-reperfusion injury in rabbits,” Brain Research, vol. 1378, pp. 125–136, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. Q. Sun, J. Cai, J. Zhou et al., “Hydrogen-rich saline reduces delayed neurologic sequelae in experimental carbon monoxide toxicity,” Critical Care Medicine, vol. 39, no. 4, pp. 765–769, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. Q. A. Sun, J. Cai, S. Liu et al., “Hydrogen-rich saline provides protection against hyperoxic lung injury,” Journal of Surgical Research, vol. 165, no. 1, pp. e43–e49, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Wang, G. Yu, S. Y. Liu et al., “Hydrogen-rich saline protects against renal ischemia/reperfusion injury in rats,” Journal of Surgical Research, vol. 167, no. 2, pp. e339–e344, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. Q. Ji, K. Hui, L. Zhang, X. Sun, W. Li, and M. Duan, “The effect of hydrogen-rich saline on the brain of rats with transient ischemia,” Journal of Surgical Research, vol. 168, no. 1, pp. e95–e101, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Liu, W. Liu, X. Sun et al., “Hydrogen saline offers neuroprotection by reducing oxidative stress in a focal cerebral ischemia-reperfusion rat model,” Medical Gas Research, vol. 1, article 15, 2011. View at Google Scholar
  57. L. Shen, J. Wang, K. Liu et al., “Hydrogen-rich saline is cerebroprotective in a rat model of deep hypothermic circulatory arrest,” Neurochemical Research, vol. 36, no. 8, pp. 1501–1511, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. X. Yang, L. Guo, X. Sun, X. Chen, and X. Tong, “Protective effects of hydrogen-rich saline in preeclampsia rat model,” Placenta, vol. 32, pp. 681–686, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. B. M. Buchholz, K. Masutani, T. Kawamura et al., “Hydrogen-enriched preservation protects the isogeneic intestinal graft and amends recipient gastric function during transplantation,” Transplantation, vol. 92, pp. 985–992, 2011. View at Google Scholar
  60. C. S. Huang, T. Kawamura, X. Peng et al., “Hydrogen inhalation reduced epithelial apoptosis in ventilator-induced lung injury via a mechanism involving nuclear factor-kappa B activation,” Biochemical and Biophysical Research Communications, vol. 408, no. 2, pp. 253–258, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Kubota, S. Shimmura, S. Kubota et al., “Hydrogen and N-acetyl-L-cysteine rescue oxidative stress-induced angiogenesis in a mouse corneal alkali-burn model,” Investigative Ophthalmology and Visual Science, vol. 52, no. 1, pp. 427–433, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. H. Sun, L. Chen, W. Zhou et al., “The protective role of hydrogen-rich saline in experimental liver injury in mice,” Journal of Hepatology, vol. 54, no. 3, pp. 471–480, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Chen, Y. P. Sun, P. F. Hu et al., “The effects of hydrogen-rich saline on the contractile and structural changes of intestine induced by ischemia-reperfusion in rats,” Journal of Surgical Research, vol. 167, no. 2, pp. 316–322, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Itoh, Y. Fujita, M. Ito et al., “Molecular hydrogen suppresses FcεRI-mediated signal transduction and prevents degranulation of mast cells,” Biochemical and Biophysical Research Communications, vol. 389, no. 4, pp. 651–656, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. Q. Sun, Z. Kang, J. Cai et al., “Hydrogen-rich saline protects myocardium against ischemia/reperfusion injury in rats,” Experimental Biology and Medicine, vol. 234, no. 10, pp. 1212–1219, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Hugyecz, É. Mracskó, P. Hertelendy, E. Farkas, F. Domoki, and F. Bari, “Hydrogen supplemented air inhalation reduces changes of prooxidant enzyme and gap junction protein levels after transient global cerebral ischemia in the rat hippocampus,” Brain Research, vol. 1404, pp. 31–38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. T. Itoh, N. Hamada, R. Terazawa et al., “Molecular hydrogen inhibits lipopolysaccharide/interferon γ-induced nitric oxide production through modulation of signal transduction in macrophages,” Biochemical and Biophysical Research Communications, vol. 411, no. 1, pp. 143–149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. S. U. Christl, P. R. Murgatroyd, G. R. Gibson, and J. H. Cummings, “Production, metabolism, and excretion of hydrogen in the large intestine,” Gastroenterology, vol. 102, no. 4, pp. 1269–1277, 1992. View at Google Scholar · View at Scopus
  69. A. Strocchi and M. D. Levitt, “Maintaining intestinal H2 balance: credit the colonic bacteria,” Gastroenterology, vol. 102, no. 4, pp. 1424–1426, 1992. View at Google Scholar · View at Scopus
  70. Y. Suzuki, M. Sano, K. Hayashida, I. Ohsawa, S. Ohta, and K. Fukuda, “Are the effects of α-glucosidase inhibitors on cardiovascular events related to elevated levels of hydrogen gas in the gastrointestinal tract?” FEBS Letters, vol. 583, no. 13, pp. 2157–2159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Shimouchi, K. Nose, M. Takaoka, H. Hayashi, and T. Kondo, “Effect of dietary turmeric on breath hydrogen,” Digestive Diseases and Sciences, vol. 54, no. 8, pp. 1725–1729, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. G. R. Corazza, M. Sorge, A. Strocchi et al., “Non-absorbable antibiotics and small bowel bacterial overgrowth,” Italian Journal of Gastroenterology, vol. 24, no. 9, pp. 4–9, 1992. View at Google Scholar · View at Scopus
  73. X. Chen, Q. Zuo, Y. Hai, and X. J. Sun, “Lactulose: an indirect antioxidant ameliorating inflammatory bowel disease by increasing hydrogen production,” Medical Hypotheses, vol. 76, no. 3, pp. 325–327, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Ito, M. Hirayama, K. Yamai et al., “Drinking hydrogen water and intermittent hydrogen gas exposure, but not lactulose or continuous hydrogen gas exposure, prevent 6-hydorxydopamine-induced Parkinson's disease in rats,” Medical Gas Research, vol. 2, article 15, 2012. View at Google Scholar
  75. Y. Sato, S. Kajiyama, A. Amano et al., “Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice,” Biochemical and Biophysical Research Communications, vol. 375, no. 3, pp. 346–350, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. X. Ji, W. Liu, K. Xie et al., “Beneficial effects of hydrogen gas in a rat model of traumatic brain injury via reducing oxidative stress,” Brain Research, vol. 1354, pp. 196–205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. J. M. Eckermann, W. Chen, V. Jadhav et al., “Hydrogen is neuroprotective against surgically induced brain injury,” Medical Gas Research, vol. 1, article 7, 2011. View at Google Scholar
  78. C. Chen, Q. Chen, Y. Mao et al., “Hydrogen-rich saline protects against spinal cord injury in rats,” Neurochemical Research, vol. 35, no. 7, pp. 1111–1118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. H. Oharazawa, T. Igarashi, T. Yokota et al., “Protection of the retina by rapid diffusion of hydrogen: administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury,” Investigative Ophthalmology and Visual Science, vol. 51, no. 1, pp. 487–492, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. S. Kikkawa, T. Nakagawa, R. T. Horie, and J. Ito, “Hydrogen protects auditory hair cells from free radicals,” NeuroReport, vol. 20, no. 7, pp. 689–694, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Taura, Y. S. Kikkawa, T. Nakagawa, and J. Ito, “Hydrogen protects vestibular hair cells from free radicals,” Acta Oto-Laryngologica, vol. 130, no. 563, pp. 95–100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. Y. Lin, A. Kashio, T. Sakamoto, K. Suzukawa, A. Kakigi, and T. Yamasoba, “Hydrogen in drinking water attenuates noise-induced hearing loss in guinea pigs,” Neuroscience Letters, vol. 487, no. 1, pp. 12–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Zheng, K. Liu, Z. Kang et al., “Saturated hydrogen saline protects the lung against oxygen toxicity,” Undersea and Hyperbaric Medicine, vol. 37, no. 3, pp. 185–192, 2010. View at Google Scholar · View at Scopus
  84. C. S. Huang, T. Kawamura, S. Lee et al., “Hydrogen inhalation ameliorates ventilator-induced lung injury,” Critical Care, vol. 14, no. 6, article R234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. T. Kawamura, C. S. Huang, N. Tochigi et al., “Inhaled hydrogen gas therapy for prevention of lung transplant-induced ischemia/reperfusion injury in rats,” Transplantation, vol. 90, no. 12, pp. 1344–1351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Liu, K. Liu, Q. Sun et al., “Consumption of hydrogen water reduces paraquat-induced acute lung injury in rats,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 305086, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. L. Qian, F. Cao, J. Cui et al., “The potential cardioprotective effects of hydrogenin irradiated mice,” Journal of Radiation Research, vol. 51, no. 6, pp. 741–747, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. Y. Terasaki, I. Ohsawa, M. Terasaki et al., “Hydrogen therapy attenuates irradiation-induced lung damage by reducing oxidative stress,” American Journal of Physiology, vol. 301, pp. L415–L426, 2011. View at Google Scholar
  89. Y. Chuai, L. Zhao, J. Ni et al., “A possible prevention strategy of radiation pneumonitis: combine radiotherapy with aerosol inhalation of hydrogen-rich solution,” Medical Science Monitor, vol. 17, no. 4, pp. 1–4, 2011. View at Google Scholar · View at Scopus
  90. Y. Fang, X. J. Fu, C. Gu et al., “Hydrogen-rich saline protects against acute lung injury induced by extensive burn in rat model,” Journal of Burn Care and Research, vol. 32, no. 3, pp. e82–e91, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. K. Hayashida, M. Sano, I. Ohsawa et al., “Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury,” Biochemical and Biophysical Research Communications, vol. 373, no. 1, pp. 30–35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. N. Nakashima-Kamimura, T. Mori, I. Ohsawa, S. Asoh, and S. Ohta, “Molecular hydrogen alleviates nephrotoxicity induced by an anti-cancer drug cisplatin without compromising anti-tumor activity in mice,” Cancer Chemotherapy and Pharmacology, vol. 64, no. 4, pp. 753–761, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Kitamura, S. Kobayashi, T. Matsushita, H. Fujinawa, and K. Murase, “Experimental verification of protective effect of hydrogen-rich water against cisplatin-induced nephrotoxicity in rats using dynamic contrast-enhanced CT,” British Journal of Radiology, vol. 83, no. 990, pp. 509–514, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. T. Matsushita, Y. Kusakabe, A. Kitamura, S. Okada, and K. Murase, “Investigation of protective effect of hydrogen-rich water against cisplatin-induced nephrotoxicity in rats using blood oxygenation level-dependent magnetic resonance imaging,” Japanese Journal of Radiology, vol. 29, pp. 503–512, 2011. View at Google Scholar
  95. J. S. Cardinal, J. Zhan, Y. Wang et al., “Oral hydrogen water prevents chronic allograft nephropathy in rats,” Kidney International, vol. 77, no. 2, pp. 101–109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. S. Yoon, D. H. Kim, S. K. Kim et al., “The melamine excretion effect of the electrolyzed reduced water in melamine-fed mice,” Food and Chemical Toxicology, vol. 49, no. 8, pp. 1814–1819, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. H. Chen, Y. P. Sun, Y. Li et al., “Hydrogen-rich saline ameliorates the severity of l-arginine-induced acute pancreatitis in rats,” Biochemical and Biophysical Research Communications, vol. 393, no. 2, pp. 308–313, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. I. Ohsawa, K. Nishimaki, K. Yamagata, M. Ishikawa, and S. Ohta, “Consumption of hydrogen water prevents atherosclerosis in apolipoprotein E knockout mice,” Biochemical and Biophysical Research Communications, vol. 377, no. 4, pp. 1195–1198, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Hashimoto and M. Katakura, “Effects of hydrogen-rich water on abnormalities in a SHR.Cg-Leprcp/NDmcr rat—a metabolic syndrome rat model,” Medical Gas Research, vol. 1, article 26, 2011. View at Google Scholar
  100. K. Xie, Y. Yu, Y. Pei et al., “Protective effects of hydrogen gas on murine polymicrobial sepsis via reducing oxidative stress and HMGB1 release,” Shock, vol. 34, no. 1, pp. 90–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. K. L. Xie, Y. H. Yu, Z. S. Zhang et al., “Hydrogen gas improves survival rate and organ damage in zymosan-induced generalized inflammation model,” Shock, vol. 34, no. 5, pp. 495–501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. X. X. Ni, Z. Y. Cai, D. F. Fan et al., “Protective effect of hydrogen-rich saline on decompression sickness in rats,” Aviation Space and Environmental Medicine, vol. 82, no. 6, pp. 604–609, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. H. Kawasaki, J. Guan, and K. Tamama, “Hydrogen gas treatment prolongs replicative lifespan of bone marrow multipotential stromal cells in vitro while preserving differentiation and paracrine potentials,” Biochemical and Biophysical Research Communications, vol. 397, no. 3, pp. 608–613, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. L. R. Qian, F. Cao, J. Cui et al., “Radioprotective effect of hydrogen in cultured cells and mice,” Free Radical Research, vol. 44, no. 3, pp. 275–282, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. L. R. Qian, B. L. Li, F. Cao et al., “Hydrogen-rich PBS protects cultured human cells from ionizing radiation-induced cellular damage,” Nuclear Technology and Radiation Protection, vol. 25, no. 1, pp. 23–29, 2010. View at Publisher · View at Google Scholar · View at Scopus