Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 194546, 13 pages
http://dx.doi.org/10.1155/2013/194546
Review Article

Targeting Microglial KATP Channels to Treat Neurodegenerative Diseases: A Mitochondrial Issue

1Unitat de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), UB c/Casanova 143, E 08036 Barcelona, Spain
2Neurometabolic Disease Lab, Hospital Duran i Reynals, L'Hospitalet de Llobregat, E 08907 Barcelona, Spain

Received 14 January 2013; Revised 26 March 2013; Accepted 8 May 2013

Academic Editor: Grzegorz A. Czapski

Copyright © 2013 Manuel J. Rodríguez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. J. Ortega, J. Vidal-Taboada, N. Mahy, and M. J. Rodriguez, “Molecular mechanisms of acute brain injury and ensuing neurodegeneration,” in Brain Damage—Bridging Between Basic Research and Clinics, chapter 7, pp. 163–186, InTech Open Access Publisher Rijeka, Rijeka, Croatia, 2012. View at Google Scholar
  2. D. P. Schafer, E. K. Lehrman, and B. Stevens, “The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS,” Glia, vol. 61, no. 1, pp. 24–36, 2013. View at Google Scholar
  3. J. Vidal-Taboada, N. Mahy, and M. J. Rodriguez, “Microglia, calcification and neurodegenerative diseases,” in Neurodegenerative Diseases—Processes, Prevention, Protection and Monitoring, chapter 13, pp. 301–322, InTech Open Access Publisher Rijeka, Rijeka, Croatia, 2011. View at Google Scholar
  4. G. A. Garden and A. R. La Spada, “Intercellular (Mis)communication in neurodegenerative disease,” Neuron, vol. 73, no. 5, pp. 886–901, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. M. S. Forman, J. Q. Trojanowski, and V. M. Lee, “Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs,” Nature Medicine, vol. 10, no. 10, pp. 1055–1063, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Morales, L. D. Estrada, R. Diaz-Espinoza et al., “Molecular cross talk between misfolded proteins in animal models of alzheimer's and prion diseases,” Journal of Neuroscience, vol. 30, no. 13, pp. 4528–4535, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. C. Drew, C. L. Masters, and K. J. Barnham, “Alzheimer's Aβ peptides with disease-associated NTerminal modifications: influence of isomerisation, truncation and mutation on Cu2+ coordination,” PLoS ONE, vol. 5, no. 12, Article ID e15875, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. P. Taylor, J. Hardy, and K. H. Fischbeck, “Toxic proteins in neurodegenerative disease,” Science, vol. 296, no. 5575, pp. 1991–1995, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. S. E. Hickman, E. K. Allison, and J. El Khoury, “Microglial dysfunction and defective β-amyloid clearance pathways in aging alzheimer's disease mice,” Journal of Neuroscience, vol. 28, no. 33, pp. 8354–8360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. H. Appel, W. Zhao, D. R. Beers, and J. S. Henkel, “The microglial-motoneuron dialogue in ALS,” Acta Myologica, vol. 30, pp. 4–8, 2011. View at Google Scholar · View at Scopus
  11. I. R. A. Mackenzie, “Activated microglia in dementia with Lewy bodies,” Neurology, vol. 55, no. 1, pp. 132–134, 2000. View at Google Scholar · View at Scopus
  12. H. Lee, J. Suk, E. Bae, and S. Lee, “Clearance and deposition of extracellular α-synuclein aggregates in microglia,” Biochemical and Biophysical Research Communications, vol. 372, no. 3, pp. 423–428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Deleidi, P. J. Hallett, J. B. Koprich, C. Chung, and O. Isacson, “The toll-like receptor-3 agonist polyinosinic:polycytidylic acid triggers nigrostriatal dopaminergic degeneration,” Journal of Neuroscience, vol. 30, no. 48, pp. 16091–16101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. B. Koprich, C. Reske-Nielsen, P. Mithal, and O. Isacson, “Neuroinflammation mediated by IL-1β increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson's disease,” Journal of Neuroinflammation, vol. 5, article 8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. C. F. Orr, D. B. Rowe, Y. Mizuno, H. Mori, and G. M. Halliday, “A possible role for humoral immunity in the pathogenesis of Parkinson's disease,” Brain, vol. 128, no. 11, pp. 2665–2674, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Deleidi and W. Maetzler, “Protein clearance mechanisms of alpha-synuclein and amyloid-beta in lewy body disorders,” International Journal of Alzheimer's Disease, vol. 2012, Article ID 391438, 9 pages, 2012. View at Publisher · View at Google Scholar
  17. N. Zilka, Z. Stozicka, A. Kovac, E. Pilipcinec, O. Bugos, and M. Novak, “Human misfolded truncated tau protein promotes activation of microglia and leukocyte infiltration in the transgenic rat model of tauopathy,” Journal of Neuroimmunology, vol. 209, no. 1-2, pp. 16–25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Mandrekar, Q. Jiang, C. Y. D. Lee, J. Koenigsknecht-Talboo, D. M. Holtzman, and G. E. Landreth, “Microglia mediate the clearance of soluble aβ through fluid phase macropinocytosis,” Journal of Neuroscience, vol. 29, no. 13, pp. 4252–4262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Lau and M. Tymianski, “Glutamate receptors, neurotoxicity and neurodegeneration,” Pflugers Archiv European Journal of Physiology, vol. 460, no. 2, pp. 525–542, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. T. P. Obrenovitch, J. Urenjak, E. Zilkha, and T. M. Jay, “Excitotoxicity in neurological disorders—the glutamate paradox,” International Journal of Developmental Neuroscience, vol. 18, no. 2-3, pp. 281–287, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. M. J. Rodríguez, M. Pugliese, and N. Mahy, “Drug abuse, brain calcification and glutamate-induced neurodegeneration,” Current Drug Abuse Reviews, vol. 2, no. 1, pp. 99–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. J. Rodríguez, P. Robledo, C. Andrade, and N. Mahy, “In vivo co-ordinated interactions between inhibitory systems to control glutamate-mediated hippocampal excitability,” Journal of Neurochemistry, vol. 95, no. 3, pp. 651–661, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. R. M. Sapolsky, “Cellular defenses against excitotoxic insults,” Journal of Neurochemistry, vol. 76, no. 6, pp. 1601–1611, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. M. J. Rodríguez, F. Bernal, N. Andrés, Y. Malpesa, and N. Mahy, “Excitatory amino acids and neurodegeneration: a hypothetical role of calcium precipitation,” International Journal of Developmental Neuroscience, vol. 18, no. 2-3, pp. 299–307, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Ramonet, M. J. Rodríguez, K. Fredriksson, F. Bernal, and N. Mahy, “In vivo neuroprotective adaptation of the glutamate/glutamine cycle to neuronal death,” Hippocampus, vol. 14, no. 5, pp. 586–594, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Biber, H. Neumann, K. Inoue, and H. W. G. M. Boddeke, “Neuronal “On” and “Off” signals control microglia,” Trends in Neurosciences, vol. 30, no. 11, pp. 596–602, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Dutta, D. S. Barber, P. Zhang, N. J. Doperalski, and B. Liu, “Involvement of dopaminergic neuronal cystatin C in neuronal injury-induced microglial activation and neurotoxicity,” Journal of Neurochemistry, vol. 122, pp. 752–763, 2012. View at Google Scholar
  28. W. J. Streit, “Microglia and neuroprotection: implications for Alzheimer's disease,” Brain Research Reviews, vol. 48, no. 2, pp. 234–239, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. J. A. Sloane, D. Blitz, Z. Margolin, and T. Vartanian, “A clear and present danger: endogenous ligands of Toll-like receptors,” NeuroMolecular Medicine, vol. 12, no. 2, pp. 149–163, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati, “The chemokine system in diverse forms of macrophage activation and polarization,” Trends in Immunology, vol. 25, no. 12, pp. 677–686, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Stolzing and T. Grune, “Impairment of protein homeostasis and decline of proteasome activity in microglial cells from adult wistar rats,” Journal of Neuroscience Research, vol. 71, no. 2, pp. 264–271, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Stolzing, R. Widmer, T. Jung, P. Voss, and T. Grune, “Tocopherol-mediated modulation of age-related changes in microglial cells: turnover of extracellular oxidized protein material,” Free Radical Biology and Medicine, vol. 40, no. 12, pp. 2126–2135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. M. B. Graeber and W. J. Streit, “Microglia: biology and pathology,” Acta Neuropathologica, vol. 119, no. 1, pp. 89–105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Chen, K. M. Connor, and L. E. H. Smith, “Overstaying their welcome: defective CX3CR1 microglia eyed in macular degeneration,” Journal of Clinical Investigation, vol. 117, no. 10, pp. 2758–2762, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Croisier and M. B. Graeber, “Glial degeneration and reactive gliosis in alpha-synucleinopathies: the emerging concept of primary gliodegeneration,” Acta Neuropathologica, vol. 112, no. 5, pp. 517–530, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. W. J. Streit, H. Braak, Q. Xue, and I. Bechmann, “Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease,” Acta Neuropathologica, vol. 118, no. 4, pp. 475–485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Schwartz, O. Butovsky, W. Brück, and U. Hanisch, “Microglial phenotype: is the commitment reversible?” Trends in Neurosciences, vol. 29, no. 2, pp. 68–74, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. L. de Yebra, Y. Malpesa, G. Ursu et al., “Dissociation between hippocampal neuronal loss, astroglial and microglial reactivity after pharmacologically induced reverse glutamate transport,” Neurochemistry International, vol. 49, no. 7, pp. 691–697, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Dirscherl, M. Karlstetter, S. Ebert et al., “Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype,” Journal of Neuroinflammation, vol. 7, article 3, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. M. L. Block, L. Zecca, and J. Hong, “Microglia-mediated neurotoxicity: uncovering the molecular mechanisms,” Nature Reviews Neuroscience, vol. 8, no. 1, pp. 57–69, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Desler and L. J. Rasmussen, “Mitochondria in biology and medicine,” Mitochondrion, vol. 12, no. 4, pp. 472–476, 2012. View at Google Scholar
  42. G. Csordás and G. Hajnóczky, “SR/ER-mitochondrial local communication: calcium and ROS,” Biochimica et Biophysica Acta, vol. 1787, no. 11, pp. 1352–1362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. A. P. West, I. E. Brodsky, C. Rahner et al., “TLR signalling augments macrophage bactericidal activity through mitochondrial ROS,” Nature, vol. 472, no. 7344, pp. 476–480, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. R. O. Vogel, R. J. R. J. Janssen, M. A. M. van den Brand et al., “Cytosolic signaling protein Ecsit also localizes to mitochondria where it interacts with chaperone NDUFAF1 and functions in complex I assembly,” Genes & Development, vol. 21, no. 5, pp. 615–624, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. M. P. Murphy, “How mitochondria produce reactive oxygen species,” Biochemical Journal, vol. 417, no. 1, pp. 1–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Prinz and U. Hanisch, “Murine microglial cells produce and respond to interleukin-18,” Journal of Neurochemistry, vol. 72, no. 5, pp. 2215–2218, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. I. Allaman, M. Bélanger, and P. J. Magistretti, “Astrocyte-neuron metabolic relationships: for better and for worse,” Trends in Neurosciences, vol. 34, no. 2, pp. 76–87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. G. M. Halliday and C. H. Stevens, “Glia: initiators and progressors of pathology in Parkinson's disease,” Movement Disorders, vol. 26, no. 1, pp. 6–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. J. S. Henkel, D. R. Beers, W. Zhao, and S. H. Appel, “Microglia in ALS: the good, the bad, and the resting,” Journal of Neuroimmune Pharmacology, vol. 4, no. 4, pp. 389–398, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Bernhart, M. Kollroser, G. Rechberger et al., “Lysophosphatidic acid receptor activation affects the C13NJ microglia cell line proteome leading to alterations in glycolysis, motility, and cytoskeletal architecture,” Proteomics, vol. 10, no. 1, pp. 141–158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Ulivieri, “Cell death: insights into the ultrastructure of mitochondria,” Tissue and Cell, vol. 42, no. 6, pp. 339–347, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. R. J. Youle and A. M. van der Bliek, “Mitochondrial fission, fusion, and stress,” Science, vol. 337, no. 6098, pp. 1062–1105, 2012. View at Google Scholar
  53. D. Cahard, X. Canat, P. Carayon, C. Roque, P. Casellas, and G. Le Fur, “Subcellular localization of peripheral benzodiazepine receptors on human leukocytes,” Laboratory Investigation, vol. 70, no. 1, pp. 23–28, 1994. View at Google Scholar · View at Scopus
  54. V. Papadopoulos, N. Boujrad, M. D. Ikonomovic, P. Ferrara, and B. Vidic, “Topography of the Leydig cell mitochondrial peripheral-type benzodiazepine receptor,” Molecular and Cellular Endocrinology, vol. 104, pp. R5–R9, 1994. View at Google Scholar
  55. F. Bernal, V. Petegnief, M. J. Rodríguez, G. Ursu, M. Pugliese, and N. Mahy, “Nimodipine inhibits TMB-8 potentiation of AMPA-induced hippocampal neurodegeneration,” Journal of Neuroscience Research, vol. 87, no. 5, pp. 1240–1249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. V. Petegnief, G. Ursu, F. Bernal, and N. Mahy, “Nimodipine and TMB-8 potentiate the AMPA-induced lesion in the basal ganglia,” Neurochemistry International, vol. 44, no. 4, pp. 287–291, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. R. B. Banati, J. Newcombe, R. N. Gunn et al., “The peripheral benzodiazepine binding site in the brain in multiple sclerosis. Quantitative in vivo imaging of microglia as a measure of disease activity,” Brain, vol. 123, no. 11, pp. 2321–2337, 2000. View at Google Scholar · View at Scopus
  58. F. Malka, A. Lombès, and M. Rojo, “Organization, dynamics and transmission of mitochondrial DNA: focus on vertebrate nucleoids,” Biochimica et Biophysica Acta, vol. 1763, no. 5-6, pp. 463–472, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. D. Takai, K. Isobe, and J. Hayashi, “Transcomplementation between different types of respiration-deficient mitochondria with different pathogenic mutant mitochondrial DNAs,” Journal of Biological Chemistry, vol. 274, no. 16, pp. 11199–11202, 1999. View at Publisher · View at Google Scholar · View at Scopus
  60. D. A. Kubli and A. B. Gustafsson, “Mitochondria and mitophagy: the yin and yang of cell death control,” Circulation Research, vol. 111, no. 9, pp. 1208–1221, 2012. View at Google Scholar
  61. D. Santos and S. M. Cardoso, “Mitochondrial dynamics and neuronal fate in Parkinson's disease,” Mitochondrion, vol. 12, no. 4, pp. 428–437, 2012. View at Google Scholar
  62. N. J. van Bergen, J. G. Crowston, L. S. Kearns et al., “Mitochondrial oxidative phosphorylation compensation may preserve vision in patients with OPA1-linked autosomal dominant optic atrophy,” PLoS ONE, vol. 6, no. 6, Article ID e21347, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Matute, M. Domercq, and M. Sánchez-Gómez, “Glutamate-mediated glial injury: mechanisms and clinical importance,” Glia, vol. 53, no. 2, pp. 212–224, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. M. T. Fischer, R. Sharma, J. L. Lim et al., “NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury,” Brain, vol. 135, no. 3, pp. 886–899, 2012. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Gras, F. Porcheray, B. Samah, and C. Leone, “The glutamate-glutamine cycle as an inducible, protective face of macrophage activation,” Journal of Leukocyte Biology, vol. 80, no. 5, pp. 1067–1075, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. N. Svoboda and H. H. Kerschbaum, “L-Glutamine-induced apoptosis in microglia is mediated by mitochondrial dysfunction,” European Journal of Neuroscience, vol. 30, no. 2, pp. 196–206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. R. Rizzuto, D. De Stefani, A. Raffaello, and C. Mammucari, “Mitochondria as sensors and regulators of calcium signaling,” Nature Reviews Molecular Cell Biology, vol. 13, no. 9, pp. 566–578, 2012. View at Google Scholar
  68. R. G. Hansford, “Physiological role of mitochondrial Ca2+ transport,” Journal of Bioenergetics and Biomembranes, vol. 26, no. 5, pp. 495–508, 1994. View at Publisher · View at Google Scholar · View at Scopus
  69. J. G. McCormack and R. M. Denton, “The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex,” Biochemical Journal, vol. 180, no. 3, pp. 533–544, 1979. View at Google Scholar · View at Scopus
  70. J. G. McCormack, A. P. Halestrap, and R. M. Denton, “Role of calcium ions in regulation of mammalian intramitochondrial metabolism,” Physiological Reviews, vol. 70, no. 2, pp. 391–425, 1990. View at Google Scholar · View at Scopus
  71. R. Rossignol, R. Gilkerson, R. Aggeler, K. Yamagata, S. J. Remington, and R. A. Capaldi, “Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells,” Cancer Research, vol. 64, no. 3, pp. 985–993, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. M. L. J. Ashford, P. R. Boden, and J. M. Treherne, “Glucose-induced excitation of hypothalamic neurones is mediated by ATP-sensitive K+ channels,” Pflugers Archiv European Journal of Physiology, vol. 415, no. 4, pp. 479–483, 1990. View at Publisher · View at Google Scholar · View at Scopus
  73. E. Kefaloyianni, L. Bao, M. J. Rindler et al., “Measuring and evaluating the role of ATP-sensitive K+ channels in cardiac muscle,” Journal of Molecular and Cellular Cardiology, vol. 52, no. 3, pp. 596–607, 2012. View at Publisher · View at Google Scholar · View at Scopus
  74. B. E. Levin, “Glucosensing neurons do more than just sense glucose,” International Journal of Obesity, vol. 25, no. 5, pp. S68–S72, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. C. F. Kline, H. T. Kurata, T. J. Hund et al., “Dual role of KATP channel C-terminal motif in membrane targeting and metabolic regulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 39, pp. 16669–16674, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. T. J. Craig, F. M. Ashcroft, and P. Proks, “How ATP inhibits the open KATP channel,” Journal of General Physiology, vol. 132, no. 1, pp. 131–144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. C. G. Nichols and W. J. Lederer, “Adenosine triphosphate-sensitive potassium channels in the cardiovascular system,” American Journal of Physiology, vol. 261, no. 6, pp. H1675–H1686, 1991. View at Google Scholar · View at Scopus
  78. P. Proks and F. M. Ashcroft, “Modeling KATP channel gating and its regulation,” Progress in Biophysics and Molecular Biology, vol. 99, no. 1, pp. 7–19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Wheeler, C. Wang, K. Yang et al., “Coassembly of different sulfonylurea receptor subtypes extends the phenotypic diversity of ATP-sensitive potassium (KATP) channels,” Molecular Pharmacology, vol. 74, no. 5, pp. 1333–1344, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. K. W. Chan, H. Zhang, and D. E. Logothetis, “N-terminal transmembrane domain of the SUR controls trafficking and gating of Kir6 channel subunits,” The EMBO Journal, vol. 22, no. 15, pp. 3833–3843, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. S. J. Tucker, F. M. Gribble, C. Zhao, S. Trapp, and F. M. Ashcroft, “Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor,” Nature, vol. 387, no. 6629, pp. 179–183, 1997. View at Publisher · View at Google Scholar · View at Scopus
  82. C. G. Nichols, “KATP channels as molecular sensors of cellular metabolism,” Nature, vol. 440, no. 7083, pp. 470–476, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. F. M. Ashcroft and F. M. Gribble, “New windows on the mechanism of action of KATP channel openers,” Trends in Pharmacological Sciences, vol. 21, no. 11, pp. 439–445, 2000. View at Publisher · View at Google Scholar · View at Scopus
  84. F. M. Ashcroft, D. E. Harrison, and S. J. H. Ashcroft, “Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells,” Nature, vol. 312, no. 5993, pp. 446–448, 1984. View at Google Scholar · View at Scopus
  85. S. O. Göpel, T. Kanno, S. Barg, X.-G. Weng, J. Gromada, and P. Rorsman, “Regulation of glucagon release in mouse α-cells by KATP channels and inactivation of TTX-sensitive Na+ channels,” Journal of Physiology, vol. 528, no. 3, pp. 509–520, 2000. View at Google Scholar · View at Scopus
  86. W. I. Rosenblum, “ATP-sensitive potassium channels in the cerebral circulation,” Stroke, vol. 34, no. 6, pp. 1547–1552, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. M. V. Avshalumov and M. E. Rice, “Activation of ATP-sensitive K+ (KATP) channels by H2O2 underlies glutamate-dependent inhibition of striatal dopamine release,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 20, pp. 11729–11734, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. K. Yamada, J. J. J. Juan Juan Ji, H. Yuan et al., “Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure,” Science, vol. 292, no. 5521, pp. 1543–1546, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. J. G. McLarnon, S. Franciosi, X. Wang, J. H. Bae, H. B. Choi, and S. U. Kim, “Acute actions of tumor necrosis factor-α on intracellular Ca2+ and K+ currents in human microglia,” Neuroscience, vol. 104, no. 4, pp. 1175–1184, 2001. View at Publisher · View at Google Scholar · View at Scopus
  90. D. Ramonet, M. J. Rodríguez, M. Pugliese, and N. Mahy, “Putative glucosensing property in rat and human activated microglia,” Neurobiology of Disease, vol. 17, no. 1, pp. 1–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. F. J. Ortega, J. Gimeno-Bayon, J. F. Espinosa-Parrilla et al., “ATP-dependent potassium channel blockade strengthens microglial neuroprotection after hypoxia-ischemia in rats,” Experimental Neurology, vol. 235, no. 1, pp. 282–296, 2012. View at Publisher · View at Google Scholar · View at Scopus
  92. F. J. Ortega, J. Jolkkonen, N. Mahy, and M. J. Rodríguez, “Glibenclamide enhances neurogenesis and improves long-term functional recovery after transient focal cerebral ischemia,” Journal of Cerebral Blood Flow & Metabolism, vol. 33, pp. 356–364, 2013. View at Google Scholar
  93. H. Ardehali and B. O'Rourke, “Mitochondrial KATP channels in cell survival and death,” Journal of Molecular and Cellular Cardiology, vol. 39, no. 1, pp. 7–16, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. K. D. Garlid, P. Paucek, V. Yarov-Yarovoy, X. Sun, and P. A. Schindler, “The mitochondrial KATP channel as a receptor for potassium channel openers,” Journal of Biological Chemistry, vol. 271, no. 15, pp. 8796–8799, 1996. View at Google Scholar · View at Scopus
  95. J. P. Clement IV, K. Kunjilwar, G. Gonzalez et al., “Association and stoichiometry of KATP channel subunits,” Neuron, vol. 18, no. 5, pp. 827–838, 1997. View at Publisher · View at Google Scholar · View at Scopus
  96. A. Melander, H. E. Lebovitz, and O. K. Faber, “Sulfonylureas: why, which, and how?” Diabetes Care, vol. 13, no. 3, pp. 18–25, 1990. View at Google Scholar · View at Scopus
  97. J. M. Simard, S. K. Woo, G. T. Schwartzbauer, and V. Gerzanich, “Sulfonylurea receptor 1 in central nervous system injury: a focused review,” Journal of Cerebral Blood Flow & Metabolism, vol. 32, pp. 1699–1717, 2012. View at Google Scholar
  98. H. Dörschner, E. Brekardin, I. Uhde, C. Schwanstecher, and M. Schwanstecher, “Stoichiometry of sulfonylurea-induced ATP-sensitive potassium channel closure,” Molecular Pharmacology, vol. 55, no. 6, pp. 1060–1066, 1999. View at Google Scholar · View at Scopus
  99. S. Shyng, T. Ferrigni, and C. G. Nichols, “Regulation of KATP channel activity by diazoxide and MgADP: distinct functions of the two nucleotide binding folds of the sulfonylurea receptor,” Journal of General Physiology, vol. 110, no. 6, pp. 643–654, 1997. View at Publisher · View at Google Scholar · View at Scopus
  100. P. Petit and M. M. Loubatieres-Mariani, “Potassium channels of the insulin-secreting B cell,” Fundamental & Clinical Pharmacology, vol. 6, no. 3, pp. 123–134, 1992. View at Google Scholar · View at Scopus
  101. J. Koch Weser, “Diazoxide,” The New England Journal of Medicine, vol. 294, no. 23, pp. 1271–1274, 1976. View at Google Scholar · View at Scopus
  102. A. Warter, B. Gillet, A. Weryha, P. Hagbe, and M. Simler, “Hypoglycemia due to insulinoma complicated with hepatic metastases. Excellent results after 20 months of treatment with diazoxide,” Annales de Medecine Interne, vol. 121, no. 11, pp. 927–934, 1970. View at Google Scholar · View at Scopus
  103. I. Inoue, H. Nagase, K. Kishi, and T. Higuti, “ATP-sensitive K+ channel in the mitochondrial inner membrane,” Nature, vol. 352, no. 6332, pp. 244–247, 1991. View at Publisher · View at Google Scholar · View at Scopus
  104. R. Bajgar, S. Seetharaman, A. J. Kowaltowski, K. D. Garlid, and P. Paucek, “Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain,” Journal of Biological Chemistry, vol. 276, no. 36, pp. 33369–33374, 2001. View at Publisher · View at Google Scholar · View at Scopus
  105. Z. Lacza, J. A. Snipes, B. Kis, C. Szabó, G. Grover, and D. W. Busija, “Investigation of the subunit composition and the pharmacology of the mitochondrial ATP-dependent K+ channel in the brain,” Brain Research, vol. 994, no. 1, pp. 27–36, 2003. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Suzuki, K. Kotake, K. Fujikura et al., “Kir6.1: a possible subunit of ATP-sensitive K+ channels in mitochondria,” Biochemical and Biophysical Research Communications, vol. 241, no. 3, pp. 693–697, 1997. View at Publisher · View at Google Scholar · View at Scopus
  107. K. D. Garlid, P. Paucek, V. Yarov-Yarovoy et al., “Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels: possible mechanism of cardioprotection,” Circulation Research, vol. 81, no. 6, pp. 1072–1082, 1997. View at Google Scholar · View at Scopus
  108. T. Iwai, K. Tanonaka, M. Koshimizu, and S. Takeo, “Preservation of mitochondrial function by diazoxide during sustained ischaemia in the rat heart,” British Journal of Pharmacology, vol. 129, no. 6, pp. 1219–1227, 2000. View at Google Scholar · View at Scopus
  109. T. Iwai, K. Tanonaka, K. Motegi, R. Inoue, S. Kasahara, and S. Takeo, “Nicorandil preserves mitochondrial function during ischemia in perfused rat heart,” European Journal of Pharmacology, vol. 446, no. 1–3, pp. 119–127, 2002. View at Publisher · View at Google Scholar · View at Scopus
  110. D. Morin, R. Assaly, S. Paradis, and A. Berdeaux, “Inhibition of mitochondrial membrane permeability as a putative pharmacological target for cardioprotection,” Current Medicinal Chemistry, vol. 16, no. 33, pp. 4382–4398, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. J. N. Peart and G. J. Gross, “Sarcolemmal and mitochondrial KATP channels and myocardial ischemic preconditioning,” Journal of Cellular and Molecular Medicine, vol. 6, no. 4, pp. 453–464, 2002. View at Google Scholar · View at Scopus
  112. T. Brustovetsky and N. Shalbuyeva, “Lack of manifestations of diazoxide/5-hydroxydecanoate-sensitive KATP channel in rat brain nonsynaptosomal mitochondria,” Journal of Physiology, vol. 568, no. 1, pp. 47–59, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. M. J. Hansson, S. Morota, M. Teilum, G. Mattiasson, H. Uchino, and E. Elmér, “Increased potassium conductance of brain mitochondria induces resistance to permeability transition by enhancing matrix volume,” Journal of Biological Chemistry, vol. 285, no. 1, pp. 741–750, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. P. J. Hanley, S. Dröse, U. Brandt et al., “5-hydroxydecanoate is metabolised in mitochondria and creates a rate-limiting bottleneck for β-oxidation of fatty acids,” Journal of Physiology, vol. 562, no. 2, pp. 307–318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. H. Katoh, N. Nishigaki, and H. Hayashi, “Diazoxide opens the mitochondrial permeability transition pore and alters Ca2+ transients in rat ventricular myocytes,” Circulation, vol. 105, no. 22, pp. 2666–2671, 2002. View at Publisher · View at Google Scholar · View at Scopus
  116. K. D. Garlid and A. P. Halestrap, “The mitochondrial KATP channel-Fact or fiction?” Journal of Molecular and Cellular Cardiology, vol. 52, no. 3, pp. 578–583, 2012. View at Publisher · View at Google Scholar · View at Scopus
  117. K. D. Garlid and P. Paucek, “Mitochondrial potassium transport: the K+ cycle,” Biochimica et Biophysica Acta, vol. 1606, no. 1–3, pp. 23–41, 2003. View at Publisher · View at Google Scholar · View at Scopus
  118. A. J. Kowaltowski, S. Seetharaman, P. Paucek, and K. D. Garlid, “Bioenergetic consequences of opening the ATP-sensitive K+ channel of heart mitochondria,” American Journal of Physiology, vol. 280, no. 2, pp. H649–H657, 2001. View at Google Scholar · View at Scopus
  119. Q. Huang, Z. Guo, Y. Yu et al., “Diazoxide inhibits aortic endothelial cell apoptosis in diabetic rats via activation of ERK,” Acta Diabetologica, pp. 1–10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  120. D. B. Foster, A. S. Ho, J. Rucker et al., “Mitochondrial ROMK channel is a molecular component of mitoKATP,” Circulation Research, vol. 111, no. 4, pp. 446–454, 2012. View at Google Scholar
  121. H. Hu, T. Sato, J. Seharaseyon et al., “Pharmacological and histochemical distinctions between molecularly defined sarcolemmal KATP channels and native cardiac mitochondrial KATP channels,” Molecular Pharmacology, vol. 55, no. 6, pp. 1000–1005, 1999. View at Google Scholar · View at Scopus
  122. N. Virgili, J. F. Espinosa-Parrilla, P. Mancera et al., “Oral administration of the KATP channel opener diazoxide ameliorates disease progression in a murine model of multiple sclerosis,” Journal of Neuroinflammation, vol. 8, article 149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  123. Y. Goodman and M. P. Mattson, “K+ channel openers protect hippocampal neurons against oxidative injury and amyloid β-peptide toxicity,” Brain Research, vol. 706, no. 2, pp. 328–332, 1996. View at Publisher · View at Google Scholar · View at Scopus
  124. E. Robin, M. Simerabet, S. M. Hassoun et al., “Postconditioning in focal cerebral ischemia: role of the mitochondrial ATP-dependent potassium channel,” Brain Research, vol. 1375, pp. 137–146, 2011. View at Publisher · View at Google Scholar · View at Scopus
  125. G. Roseborough, D. Gao, L. Chen et al., “The mitochondrial K-ATP channel opener, diazoxide, prevents ischemia-reperfusion injury in the rabbit spinal cord,” American Journal of Pathology, vol. 168, no. 5, pp. 1443–1451, 2006. View at Publisher · View at Google Scholar · View at Scopus
  126. F. Zhou, H. Yao, J. Wu, J. Ding, T. Sun, and G. Hu, “Opening of microglial KATP channels inhibits rotenone-induced neuroinflammation,” Journal of Cellular and Molecular Medicine, vol. 12, no. 5A, pp. 1559–1570, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. M. A. Mastrangelo and W. J. Bowers, “Detailed immunohistochemical characterization of temporal and spatial progression of Alzheimer's disease-related pathologies in male triple-transgenic mice,” BMC Neuroscience, vol. 9, article 81, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. D. Liu, M. Pitta, J. Lee et al., “The KATP channel activator diazoxide ameliorates amyloid-β and Tau pathologies and improves memory in the 3xTgAD mouse model of Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 22, no. 2, pp. 443–457, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. G. Ma, Q. Fu, Y. Zhang et al., “Effects of Aβ1-42 on the subunits of KATP expression in cultured primary rat basal forebrain neurons,” Neurochemical Research, vol. 33, no. 7, pp. 1419–1424, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. G. L. Caldeira, I. L. Ferreira, and A. C. Rego, “Impaired transcription in Alzheimer's disease: key role in mitochondrial dysfunction and oxidative stress,” Journal of Alzheimer's Disease, vol. 34, pp. 115–131, 2013. View at Google Scholar
  131. M. Sadowski, J. Pankiewicz, H. Scholtzova et al., “Amyloid-β deposition is associated with decreased hippocampal glucose metabolism and spatial memory impairment in APP/PS1 mice,” Journal of Neuropathology and Experimental Neurology, vol. 63, no. 5, pp. 418–428, 2004. View at Google Scholar · View at Scopus
  132. M. J. Rodríguez, M. Martínez-Sánchez, F. Bernal, and N. Mahy, “Heterogeneity between hippocampal and septal astroglia as a contributing factor to differential in vivo AMPA excitotoxicity,” Journal of Neuroscience Research, vol. 77, no. 3, pp. 344–353, 2004. View at Publisher · View at Google Scholar · View at Scopus
  133. M. J. Rodríguez, A. Prats, Y. Malpesa et al., “Pattern of injury with a graded excitotoxic insult and ensuing chronic medial septal damage in the rat brain,” Journal of Neurotrauma, vol. 26, no. 10, pp. 1823–1834, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. E. L. Holmuhamedov, L. Wang, and A. Terzic, “ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria,” Journal of Physiology, vol. 519, no. 2, pp. 347–360, 1999. View at Publisher · View at Google Scholar · View at Scopus
  135. Y. Wang, K. Hirai, and M. Ashraf, “Activation of mitochondrial ATP-sensitive K+ channel for cardiac protection against ischemic injury is dependent on protein kinase C activity,” Circulation Research, vol. 85, no. 8, pp. 731–741, 1999. View at Google Scholar · View at Scopus