Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 327167, 10 pages
http://dx.doi.org/10.1155/2013/327167
Research Article

Mitochondrial Dysfunction Induces Formation of Lipid Droplets as a Generalized Response to Stress

1Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
2Department of Surgical Intensive Care Unit, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, China
3Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
4School of Pharmacy, Ajou University, Suwon 443-749, Republic of Korea

Received 8 July 2013; Accepted 20 August 2013

Academic Editor: Hun-Taeg Chung

Copyright © 2013 Seon-Jin Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. S. Greenberg, R. A. Coleman, F. B. Kraemer et al., “The role of lipid droplets in metabolic disease in rodents and humans,” Journal of Clinical Investigation, vol. 121, no. 6, pp. 2102–2110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. R. E. K. MacPherson, E. A. F. Herbst, E. J. Reynolds, R. Vandenboom, B. D. Roy, and S. J. Peters, “Subcellular localization of skeletal muscle lipid droplets and PLIN family proteins OXPAT and ADRP at rest and following contraction in rat soleus muscle,” The American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 302, no. 1, pp. R29–R36, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. S. M. Storey, A. L. McIntosh, S. Senthivinayagam, K. C. Moon, and B. P. Atshaves, “The phospholipid monolayer associated with perilipin-enriched lipid droplets is a highly organized rigid membrane structure,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 301, no. 5, pp. E991–E1003, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Torday and V. Rehan, “Neutral lipid trafficking regulates alveolar type II cell surfactant phospholipid and surfactant protein expression,” Experimental Lung Research, vol. 37, no. 6, pp. 376–386, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. R. C. R. Meex, P. Schrauwen, and M. K. C. Hesselink, “Modulation of myocellular fat stores: lipid droplet dynamics in health and disease,” The American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 297, no. 4, pp. R913–R924, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. S. O. Olofsson, P. Boström, L. Andersson, M. Rutberg, J. Perman, and J. Borén, “Lipid droplets as dynamic organelles connecting storage and efflux of lipids,” Biochimica et Biophysica Acta, vol. 1791, no. 6, pp. 448–458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. H. J. Kim, T. W. Jung, E. S. Kang et al., “Depot-specific regulation of perilipin by rosiglitazone in a diabetic animal model,” Metabolism, vol. 56, no. 5, pp. 676–685, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D. H. Boehme, H. J. Sobel, E. Marquet, and G. Salen, “Liver in Cerebrotendinous xanthomatosis (CTX). A histochemical and EM study of four cases,” Pathology Research and Practice, vol. 170, no. 1–3, pp. 192–201, 1980. View at Google Scholar · View at Scopus
  9. T. I. A. Sørensen, S. Virtue, and A. Vidal-Puig, “Obesity as a clinical and public health problem: is there a need for a new definition based on lipotoxicity effects?” Biochimica et Biophysica Acta, vol. 1801, no. 3, pp. 400–404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Paul, L. Chan, and P. E. Bickel, “The PAT family of lipid droplet proteins in heart and vascular cells,” Current Hypertension Reports, vol. 10, no. 6, pp. 461–466, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. O. Olofsson, P. Boström, L. Andersson et al., “Triglyceride containing lipid droplets and lipid droplet-associated proteins,” Current Opinion in Lipidology, vol. 19, no. 5, pp. 441–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. D. A. Miranda, T. R. Koves, D. A. Gross et al., “Re-patterning of skeletal muscle energy metabolism by fat storage-inducing transmembrane protein 2,” The Journal of Biological Chemistry, vol. 286, no. 49, pp. 42188–42199, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. V. A. Ivashov, G. Zellnig, K. Grillitsch, and G. Daum, “Identification of triacylglycerol and steryl ester synthases of the methylotrophic yeast Pichia pastoris,” Biochimica et Biophysica Acta, vol. 1831, no. 6, pp. 1158–1166, 2013. View at Publisher · View at Google Scholar
  14. M. Ueno, J. Suzuki, Y. Zenimaru et al., “Cardiac overexpression of hormone-sensitive lipase inhibits myocardial steatosis and fibrosis in streptozotocin diabetic mice,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 294, no. 6, pp. E1109–E1118, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Khatchadourian, S. D. Bourque, V. R. Richard, V. I. Titorenko, and D. Maysinger, “Dynamics and regulation of lipid droplet formation in lipopolysaccharide (LPS)-stimulated microglia,” Biochimica et Biophysica Acta, vol. 1821, no. 4, pp. 607–617, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Younce and P. Kolattukudy, “MCP-1 induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy,” Cellular Physiology and Biochemistry, vol. 30, no. 2, pp. 307–320, 2012. View at Publisher · View at Google Scholar
  17. M. A. Fernàndez, C. Albor, M. Ingelmo-Torres et al., “Caveolin-1 is essential for liver regeneration,” Science, vol. 313, no. 5793, pp. 1628–1632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. C. M. Blouin, S. Le Lay, A. Eberl et al., “Lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects,” Journal of Lipid Research, vol. 51, no. 5, pp. 945–956, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. W. Cohen, B. Razani, W. Schubert et al., “Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation,” Diabetes, vol. 53, no. 5, pp. 1261–1270, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. M. A. Fernández-Rojo, C. Restall, C. Ferguson et al., “Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: implications for liver regeneration,” Hepatology, vol. 55, no. 5, pp. 1574–1584, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. W. C. Su, X. Liu, A. A. Macias, R. M. Baron, and M. A. Perrella, “Heme oxygenase-1-derived carbon monoxide enhances the host defense response to microbial sepsis in mice,” Journal of Clinical Investigation, vol. 118, no. 1, pp. 239–247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. C. A. Piantadosi, C. M. Withers, R. R. Bartz et al., “Heme oxygenase-1 couples activation of mitochondrial biogenesis to anti-inflammatory cytokine expression,” The Journal of Biological Chemistry, vol. 286, no. 18, pp. 16374–16385, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Slebos, S. W. Ryter, M. van der Toorn et al., “Mitochondrial localization and function of heme oxygenase-1 in cigarette smoke-induced cell death,” The American Journal of Respiratory Cell and Molecular Biology, vol. 36, no. 4, pp. 409–417, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. C. A. Piantadosi, M. S. Carraway, A. Babiker, and H. B. Suliman, “Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via nrf2-mediated transcriptional control of nuclear respiratory factor-1,” Circulation Research, vol. 103, no. 11, pp. 1232–1240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. H. P. Kim, S. W. Ryter, and A. M. Choi, “CO as a signaling molecule,” Annual Review of Pharmacology and Toxicology, vol. 46, pp. 411–449, 2006. View at Publisher · View at Google Scholar
  26. S. W. Ryter, J. Alam, and A. M. K. Choi, “Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications,” Physiological Reviews, vol. 86, no. 2, pp. 583–650, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Tanaka, Y. Jin, S. J. Lee et al., “Hyperoxia-induced LC3B interacts with the Fas apoptotic pathway in epithelial cell death,” The American Journal of Respiratory Cell and Molecular Biology, vol. 46, no. 4, pp. 507–514, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. S. J. Lee, A. Smith, L. Guo et al., “Autophagic protein LC3B confers resistance against hypoxia-induced pulmonary hypertension,” The American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 5, pp. 649–658, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. S. J. Lee, H. P. Kim, Y. Jin, A. M. K. Choi, and S. W. Ryter, “Beclin 1 deficiency is associated with increased hypoxia-induced angiogenesis,” Autophagy, vol. 7, no. 8, pp. 829–839, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Zhang, J. Lu, D. Chen et al., “Myocardial autophagy variation during acute myocardial infarction in rats: the effects of carvedilol,” Chinese Medical Journal, vol. 122, no. 19, pp. 2372–2379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Singh, S. Kaushik, Y. Wang et al., “Autophagy regulates lipid metabolism,” Nature, vol. 458, no. 7242, pp. 1131–1135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. A. G. Bodnar, J. M. Cooper, I. J. Holt, J. V. Leonard, and A. H. V. Schapira, “Nuclear complementation restores mtDNA levels in cultured cells from a patient with mtDNA depletion,” The American Journal of Human Genetics, vol. 53, no. 3, pp. 663–669, 1993. View at Google Scholar · View at Scopus
  33. K. Nakahira, J. A. Haspel, V. A. K. Rathinam et al., “Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome,” Nature Immunology, vol. 12, no. 3, pp. 222–230, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Sekiya, A. Hiraishi, M. Touyama, and K. Sakamoto, “Oxidative stress induced lipid accumulation via SREBP1c activation in HepG2 cells,” Biochemical and Biophysical Research Communications, vol. 375, no. 4, pp. 602–607, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Gimm, M. Wiese, B. Teschemacher et al., “Hypoxia-inducible protein 2 is a novel lipid droplet protein and a specific target gene of hypoxia-inducible factor-1,” FASEB Journal, vol. 24, no. 11, pp. 4443–4458, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Perl, R. Hanczko, T. Telarico, Z. Oaks, and S. Landas, “Oxidative stress, inflammation and carcinogenesis are controlled through the pentose phosphate pathway by transaldolase,” Trends in Molecular Medicine, vol. 17, no. 7, pp. 395–403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. M. R. Soeters and P. B. Soeters, “The evolutionary benefit of insulin resistance,” Clinical Nutrition, vol. 31, no. 6, pp. 1002–1007, 2012. View at Publisher · View at Google Scholar
  38. P. Anand, S. Cermelli, Z. Li et al., “A novel role for lipid droplets in the organismal antibacterial response,” Elife, vol. 1, Article ID e00003, 2012. View at Google Scholar
  39. P. Ebeling, H. A. Koistinen, and V. A. Koivisto, “Insulin-independent glucose transport regulates insulin sensitivity,” FEBS Letters, vol. 436, no. 3, pp. 301–303, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. S. J. van Cromphaut, I. Vanhorebeek, and G. van den Berghe, “Glucose metabolism and insulin resistance in sepsis,” Current Pharmaceutical Design, vol. 14, no. 19, pp. 1887–1899, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Frank, A. Katz, E. Andersson, and K. Sahlin, “Acute exercise reverses starvation-mediated insulin resistance in humans,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 304, no. 4, pp. E436–E443, 2013. View at Publisher · View at Google Scholar
  42. B. Lindegaard, T. Hvid, T. Grøndahl et al., “Expression of fibroblast growth factor-21 in muscle is associated with lipodystrophy, insulin resistance and lipid disturbances in patients with HIV,” PLoS ONE, vol. 8, no. 3, Article ID e55632, 2013. View at Publisher · View at Google Scholar
  43. M. Bonizzoli, G. Zagli, C. Lazzeri, S. Degl'Innocenti, G. Gensini, and A. Peris, “Early insulin resistance in severe trauma without head injury as outcome predictor? A prospective, monocentric pilot study,” Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, vol. 20, article 69, 2012. View at Publisher · View at Google Scholar
  44. I. Capasso, E. Esposito, F. Pentimalli et al., “Homeostasis model assessment to detect insulin resistance and identify patients at high risk of breast cancer development: national cancer institute of naples experience,” Journal of Experimental and Clinical Cancer Research, vol. 32, article 14, 2013. View at Publisher · View at Google Scholar
  45. K. S. Park, K. J. Nam, J. W. Kim et al., “Depletion of mitochondrial DNA alters glucose metabolism in SK-Hep1 cells,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 280, no. 6, pp. E1007–E1014, 2001. View at Google Scholar · View at Scopus
  46. L. Formentini, M. Sánchez-Aragó, L. Sánchez-Cenizo, and J. M. C. Cuezva, “The mitochondrial ATPase inhibitory factor 1 triggers a ROS-mediated retrograde prosurvival and proliferative response,” Molecular Cell, vol. 45, no. 6, pp. 731–742, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Bonnard, A. Durand, S. Peyrol et al., “Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice,” Journal of Clinical Investigation, vol. 118, no. 2, pp. 789–800, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Lancel, S. M. Hassoun, R. Favory, B. Decoster, R. Motterlini, and R. Neviere, “Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis,” Journal of Pharmacology and Experimental Therapeutics, vol. 329, no. 2, pp. 641–648, 2009. View at Publisher · View at Google Scholar · View at Scopus