Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012, Article ID 123030, 21 pages
http://dx.doi.org/10.1155/2012/123030
Review Article

Ex Vivo Expansion of Human Mesenchymal Stem Cells in Defined Serum-Free Media

1Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, AB, Canada T2N 1N4
2Department of Surgery, McGill University, Montreal, QC, Canada H3G 1A4

Received 23 January 2012; Accepted 31 January 2012

Academic Editor: Selim Kuçi

Copyright © 2012 Sunghoon Jung et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. M. Horwitz, K. Le Blanc, M. Dominici et al., “Clarification of the nomenclature for MSC: the international society for cellular therapy position statement,” Cytotherapy, vol. 7, no. 5, pp. 393–395, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Ankrum and J. M. Karp, “Mesenchymal stem cell therapy: two steps forward, one step back,” Trends in Molecular Medicine, vol. 16, no. 5, pp. 203–209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. E. M. Horwitz, R. T. Maziarz, and P. Kebriaei, “MSCs in Hematopoietic Cell Transplantation,” Biology of Blood and Marrow Transplantation, vol. 17, no. 1, pp. S21–S29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. D. J. Prockop, ““Stemness" does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs),” Clinical Pharmacology and Therapeutics, vol. 82, no. 3, pp. 241–243, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Le Blanc and O. Ringdén, “Immunomodulation by mesenchymal stem cells and clinical experience,” Journal of Internal Medicine, vol. 262, no. 5, pp. 509–525, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Sekiya, B. L. Larson, J. R. Smith, R. Pochampally, J. G. Cui, and D. J. Prockop, “Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality,” Stem Cells, vol. 20, no. 6, pp. 530–541, 2002. View at Google Scholar · View at Scopus
  7. L. A. Solchaga, K. Penick, J. D. Porter, V. M. Goldberg, A. I. Caplan, and J. F. Welter, “FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells,” Journal of Cellular Physiology, vol. 203, no. 2, pp. 398–409, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Qian and W. M. Saltzman, “Improving the expansion and neuronal differentiation of mesenchymal stem cells through culture surface modification,” Biomaterials, vol. 25, no. 7-8, pp. 1331–1337, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Apel, A. Groth, S. Schlesinger et al., “Suitability of human mesenchymal stem cells for gene therapy depends on the expansion medium,” Experimental Cell Research, vol. 315, no. 3, pp. 498–507, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Kassem, “Stem cells: potential therapy for age-related diseases,” Annals of the New York Academy of Sciences, vol. 1067, no. 1, pp. 436–442, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Karnieli, Y. Izhar-Prato, S. Bulvik, and S. Efrat, “Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation,” Stem Cells, vol. 25, no. 11, pp. 2837–2844, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. C. M. Rice and N. J. Scolding, “Autologous bone marrow stem cells-properties and advantages,” Journal of the Neurological Sciences, vol. 265, no. 1-2, pp. 59–62, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. R. H. Lee, M. J. Seo, R. L. Reger et al., “Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 46, pp. 17438–17443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. I. Caplan, “Adult mesenchymal stem cells for tissue engineering versus regenerative medicine,” Journal of Cellular Physiology, vol. 213, no. 2, pp. 341–347, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. W. E. Fibbe, A. J. Nauta, and H. Roelofs, “Modulation of immune responses by mesenchymal stem cells,” Annals of the New York Academy of Sciences, vol. 1106, pp. 272–278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Aggarwal and M. F. Pittenger, “Human mesenchymal stem cells modulate allogeneic immune cell responses,” Blood, vol. 105, no. 4, pp. 1815–1822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Le Blanc and O. Ringdén, “Mesenchymal stem cells: properties and role in clinical bone marrow transplantation,” Current Opinion in Immunology, vol. 18, no. 5, pp. 586–591, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. B. J. Jones and S. J. McTaggart, “Immunosuppression by mesenchymal stromal cells: from culture to clinic,” Experimental Hematology, vol. 36, no. 6, pp. 733–741, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Rasmusson, “Immune modulation by mesenchymal stem cells,” Experimental Cell Research, vol. 312, no. 12, pp. 2169–2179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Uccelli, L. Moretta, and V. Pistoia, “Mesenchymal stem cells in health and disease,” Nature Reviews Immunology, vol. 8, no. 9, pp. 726–736, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. E. Bernardo, N. Zaffaroni, F. Novara et al., “Human bone marrow-derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms,” Cancer Research, vol. 67, no. 19, pp. 9142–9149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Stenderup, J. Justesen, C. Clausen, and M. Kassem, “Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells,” Bone, vol. 33, no. 6, pp. 919–926, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Bartmann, E. Rohde, K. Schallmoser et al., “Two steps to functional mesenchymal stromal cells for clinical application,” Transfusion, vol. 47, no. 8, pp. 1426–1435, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Kidd, E. Spaeth, A. Klopp, M. Andreeff, B. Hall, and F. C. Marini, “The (in) auspicious role of mesenchymal stromal cells in cancer: be it friend or foe,” Cytotherapy, vol. 10, no. 7, pp. 657–667, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. E. M. Horwitz, P. L. Gordon, W. K. K. Koo et al., “Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 13, pp. 8932–8937, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. J. L. Spees, C. A. Gregory, H. Singh et al., “Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy,” Molecular Therapy, vol. 9, no. 5, pp. 747–756, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Schaffler and C. Buchler, “Concise review: adipose tissue-derived stromal cells—Basic and clinical implications for novel cell-based therapies,” Stem Cells, vol. 25, no. 4, pp. 818–827, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Flynn, F. Barry, and T. O'Brien, “UC blood-derived mesenchymal stromal cells: an overview,” Cytotherapy, vol. 9, no. 8, pp. 717–726, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. D. L. Troyer and M. L. Weiss, “Concise review: wharton's Jelly-derived cells are a primitive stromal cell population,” Stem Cells, vol. 26, no. 3, pp. 591–599, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Barlow, G. Brooke, K. Chatterjee et al., “Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells,” Stem Cells and Development, vol. 17, no. 6, pp. 1095–1107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. G. Roubelakis, K. I. Pappa, V. Bitsika et al., “Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells,” Stem Cells and Development, vol. 16, no. 6, pp. 931–951, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. L. D. S. Meirelles, P. C. Chagastelles, and N. B. Nardi, “Mesenchymal stem cells reside in virtually all post-natal organs and tissues,” Journal of Cell Science, vol. 119, no. 11, pp. 2204–2213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. I. Bochev, G. Elmadjian, D. Kyurkchiev et al., “Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro,” Cell Biology International, vol. 32, no. 4, pp. 384–393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Davani, L. Ikonomou, B. M. Raaka et al., “Human islet-derived precursor cells are mesenchymal stromal cells that differentiate and mature to hormone-expressing cells in vivo,” Stem Cells, vol. 25, no. 12, pp. 3215–3222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Kern, H. Eichler, J. Stoeve, H. Klüter, and K. Bieback, “Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue,” Stem Cells, vol. 24, no. 5, pp. 1294–1301, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. W. Wagner, F. Wein, A. Seckinger et al., “Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood,” Experimental Hematology, vol. 33, no. 11, pp. 1402–1416, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Castro-Malaspina, R. E. Gay, and G. Resnick, “Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny,” Blood, vol. 56, no. 2, pp. 289–301, 1980. View at Google Scholar
  40. C. M. Digirolamo, D. Stokes, D. Colter, D. G. Phinney, R. Class, and D. J. Prockop, “Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate,” British Journal of Haematology, vol. 107, no. 2, pp. 275–281, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. M. M. Bonab, K. Alimoghaddam, F. Talebian, S. H. Ghaffari, A. Ghavamzadeh, and B. Nikbin, “Aging of mesenchymal stem cell in vitro,” BMC Cell Biology, vol. 7, p. 14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. S. A. Wexler, C. Donaldson, P. Denning-Kendall, C. Rice, B. Bradley, and J. M. Hows, “Adult bone marrow is a rich source of human mesenchymal 'stem' cells but umbilical cord and mobilized adult blood are not,” British Journal of Haematology, vol. 121, no. 2, pp. 368–374, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Schallmoser, E. Rohde, A. Reinisch et al., “Rapid large-scale expansion of functional mesenchymal stem cells from unmanipulated bone marrow without animal serum,” Tissue Engineering, vol. 14, no. 3, pp. 185–196, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Sensebe, “Clinical grade production of mesenchymal stem cells,” Bio-Medical Materials and Engineering, vol. 18, no. 1, pp. S3–S10, 2008. View at Google Scholar · View at Scopus
  45. A. Burgener and M. Butler, “Medium development,” in Cell Culture Technology for Pharmaceutical and Cell-Based Therapies, S. Ozturk and W. S. Hu, Eds., pp. 41–79, CRC Press, Boca Raton, Fla, USA, 2006. View at Google Scholar
  46. I. Dimarakis and N. Levicar, “Cell culture medium composition and translational adult bone marrow-derived stem cell research,” Stem Cells, vol. 24, no. 5, pp. 1407–1408, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Mannello and G. A. Tonti, “Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: Conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold!,” Stem Cells, vol. 25, no. 7, pp. 1603–1609, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Barnes and G. Sato, “Methods for growth of cultured cells in serum-free medium,” Analytical Biochemistry, vol. 102, no. 2, pp. 255–270, 1980. View at Google Scholar · View at Scopus
  49. C. Tekkatte, G. P. Gunasingh, K. M. Cherian, and K. Sankaranarayanan, “‘Humanized’ stem cell culture techniques: the animal serum controversy,” Stem Cells International, vol. 2011, Article ID 504723, 14 pages, 2011. View at Publisher · View at Google Scholar
  50. J. A. Dahl, S. Duggal, N. Coulston et al., “Genetic and epigenetic instability of human bone marrow mesenchymal stem cells expanded in autologous seum or fatal bovine serum,” International Journal of Developmental Biology, vol. 52, no. 8, pp. 1033–1042, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Mizuno, H. Shiba, Y. Ozeki et al., “Human autologous serum obtained using a completely closed bag system as a substitute for foetal calf serum in human mesenchymal stem cell cultures,” Cell Biology International, vol. 30, no. 6, pp. 521–524, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Shahdadfar, K. Frønsdal, T. Haug, F. P. Reinholt, and J. E. Brinchmann, “In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability,” Stem Cells, vol. 23, no. 9, pp. 1357–1366, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Stute, K. Holtz, M. Bubenheim, C. Lange, F. Blake, and A. R. Zander, “Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use,” Experimental Hematology, vol. 32, no. 12, pp. 1212–1225, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. S. A. Kuznetsov, M. H. Mankani, and P. G. Robey, “Effect of serum on human bone marrow stromal cells: ex vivo expansion and in vivo bone formation,” Transplantation, vol. 70, no. 12, pp. 1780–1787, 2000. View at Google Scholar · View at Scopus
  55. K. Le Blanc, H. Samuelsson, L. Lönnies, M. Sundin, and O. Ringdén, “Generation of immunosuppressive mesenchymal stem cells in allogeneic human serum,” Transplantation, vol. 84, no. 8, pp. 1055–1059, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Poloni, G. Maurizi, V. Rosini et al., “Selection of CD271+ cells and human AB serum allows a large expansion of mesenchymal stromal cells from human bone marrow,” Cytotherapy, vol. 11, no. 2, pp. 153–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Tateishi, W. Ando, C. Higuchi et al., “Comparison of human serum with fetal bovine serum for expansion and differentiation of human synovial MSC: potential feasibility for clinical applications,” Cell Transplantation, vol. 17, no. 5, pp. 549–557, 2008. View at Google Scholar · View at Scopus
  58. K. Turnovcova, K. Ruzickova, V. Vanecek, E. Sykova, and P. Jendelova, “Properties and growth of human bone marrow mesenchymal stromal cells cultivated in different media Expansion of MSC in different media,” Cytotherapy, vol. 11, no. 7, pp. 874–885, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Jung, N. Moon, J. Y. Ahn et al., “Mesenchymal stromal cells expanded in human allogenic cord blood serum display higher self-renewal and enhanced osteogenic potential,” Stem Cells and Development, vol. 18, no. 4, pp. 559–571, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. S. M. Phadnis, M. V. Joglekar, V. Venkateshan, S. M. Ghaskadbi, A. A. Hardikar, and R. R. Bhonde, “Human umbilical cord blood serum promotes growth, proliferation, as well as differentiation of human bone marrow-derived progenitor cells,” In Vitro Cellular and Developmental Biology, vol. 42, no. 10, pp. 283–286, 2006. View at Google Scholar · View at Scopus
  61. H. Shafaei, A. Esmaeili, M. Mardani et al., “Effects of human placental serum on proliferation and morphology of human adipose tissue-derived stem cells,” Bone Marrow Transplantation, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Bieback, A. Hecker, A. Kocaömer et al., “Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow,” Stem Cells, vol. 27, no. 9, pp. 2331–2341, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Capelli, M. Domenghini, G. Borleri et al., “Human platelet lysate allows expansion and clinical grade production of mesenchymal stromal cells from small samples of bone marrow aspirates or marrow filter washouts,” Bone Marrow Transplantation, vol. 40, no. 8, pp. 785–791, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. C. Doucet, I. Ernou, Y. Zhang et al., “Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications,” Journal of Cellular Physiology, vol. 205, no. 2, pp. 228–236, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Flemming, K. Schallmoser, D. Strunk, M. Stolk, H. -D. Volk, and M. Seifert, “Immunomodulative efficacy of bone marrow-derived mesenchymal stem cells cultured in human platelet lysate,” Journal of Clinical Immunology, vol. 31, no. 6, pp. 1143–1156, 2011. View at Publisher · View at Google Scholar
  66. A. Kocaoemer, S. Kern, H. Klüter, and K. Bieback, “Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue,” Stem Cells, vol. 25, no. 5, pp. 1270–1278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. C. Lange, F. Cakiroglu, A. N. Spiess, H. Cappallo-Obermann, J. Dierlamm, and A. R. Zander, “Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine,” Journal of Cellular Physiology, vol. 213, no. 1, pp. 18–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. I. Müller, S. Kordowich, C. Holzwarth et al., “Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM,” Cytotherapy, vol. 8, no. 5, pp. 437–444, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Reinisch, C. Bartmann, E. Rohde et al., “Humanized system to propagate cord blood-derived multipotent mesenchymal stromal cells for clinical application,” Regenerative Medicine, vol. 2, no. 4, pp. 371–382, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Schallmoser, C. Bartmann, E. Rohde et al., “Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells,” Transfusion, vol. 47, no. 8, pp. 1436–1446, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. R. Gruber, F. Karreth, B. Kandler et al., “Platelet-released supernatants increase migration and proliferation, and decrease osteogenic differentiation of bone marrow-derived mesenchymal progenitor cells under in vitro conditions,” Platelets, vol. 15, no. 1, pp. 29–35, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Abdelrazik, G. M. Spaggiari, L. Chiossone, and L. Moretta, “Mesenchymal stem cells expanded in human platelet lysate display a decreased inhibitory capacity on T- and NK-cell proliferation and function,” European Journal of Immunology, vol. 41, no. 11, pp. 3281–3290, 2011. View at Publisher · View at Google Scholar
  73. I. Hartmann, T. Hollweck, S. Haffner et al., “Umbilical cord tissue-derived mesenchymal stem cells grow best under GMP-compliant culture conditions and maintain their phenotypic and functional properties,” Journal of Immunological Methods, vol. 363, no. 1, pp. 80–89, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Reinhardt, A. Stuhler, and J. Blümel, “Safety of bovine sera for production of mesenchymal stem cells for therapeutic use,” Human Gene Therapy, vol. 22, no. 6, pp. 775–756, 2011. View at Publisher · View at Google Scholar
  75. L. Sensebé, P. Bourin, and K. Tarte, “Response to reinhardt et al.,” Human Gene Therapy, vol. 22, no. 6, pp. 776–777, 2011. View at Publisher · View at Google Scholar
  76. S. Jung, A. Sen, L. Rosenberg, and L. A. Behie, “Identification of growth and attachment factors for the serum-free isolation and expansion of human mesenchymal stromal cells,” Cytotherapy, vol. 12, no. 5, pp. 637–657, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. D. P. Lennon, S. E. Haynesworth, R. G. Young, J. E. Dennis, and A. I. Caplan, “A chemically defined medium supports in vitro proliferation and maintains the osteochondral potential of rat marrow-derived mesenchymal stem cells,” Experimental Cell Research, vol. 219, no. 1, pp. 211–222, 1995. View at Publisher · View at Google Scholar · View at Scopus
  78. C. H. Liu, M. L. Wu, and S. M. Hwang, “Optimization of serum free medium for cord blood mesenchymal stem cells,” Biochemical Engineering Journal, vol. 33, no. 1, pp. 1–9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. D. R. Marshak and J. J. Holecek, “Chemically defined medium for human mesenchymal stem cells,” United States Patent 5,908,782, 1999. View at Google Scholar
  80. A. M. Parker, H. Shang, M. Khurgel, and A. J. Katz, “Low serum and serum-free culture of multipotential human adipose stem cells,” Cytotherapy, vol. 9, no. 7, pp. 637–646, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Jung, A. Sen, L. Rosenberg, and L. A. Behie, “Human mesenchymal stem cell culture: rapid and efficient isolation and expansion in a defined serum-free medium,” Journal of Tissue Engineering and Regenerative Medicine, vol. 6, no. 5, pp. 391–403, 2012. View at Publisher · View at Google Scholar
  82. R. H. Lee, A. A. Pulin, M. J. Seo et al., “Intravenous hMSCs Improve Myocardial Infarction in Mice because Cells Embolized in Lung Are Activated to Secrete the Anti-inflammatory Protein TSG-6,” Cell Stem Cell, vol. 5, no. 1, pp. 54–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. T. J. Bartosh, J. H. Ylöstalo, A. Mohammadipoor et al., “Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 31, pp. 13724–13729, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. K. Rajala, B. Lindroos, S. M. Hussein et al., “A Defined and Xeno-Free Culture Method Enabling the Establishment of Clinical-Grade Human Embryonic, Induced Pluripotent and Adipose Stem Cells,” PLoS ONE, vol. 5, no. 4, Article ID e10246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Mimura, N. Kimura, M. Hirata et al., “Growth factor-defined culture medium for human mesenchymal stem cells,” International Journal of Developmental Biology, vol. 55, no. 2, pp. 181–187, 2011. View at Publisher · View at Google Scholar
  86. H. Kagami, H. Agata, R. Kato, F. Matsuoka, and A. Tojo, “Fundamental technological developments required for increased availability of tissue engineering,” in Regenerative Medicine and Tissue Engineering—Cells and Biomaterials, D. Eberli, Ed., InTech, Rijeka, Croatia, 2011. View at Google Scholar
  87. H. Agata, N. Watanabe, Y. Ishii et al., “Feasibility and efficacy of bone tissue engineering using human bone marrow stromal cells cultivated in serum-free conditions,” Biochemical and Biophysical Research Communications, vol. 382, no. 2, pp. 353–358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. B. Lindroos, S. Boucher, L. Chase et al., “Serum-free, xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro,” Cytotherapy, vol. 11, no. 7, pp. 958–972, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. H. Miwa, Y. Hashimoto, K. Tensho, S. Wakitani, and M. Takagi, “Xeno-free proliferation of human bone marrow mesenchymal stem cells,” Cytotechnology. In press. View at Publisher · View at Google Scholar
  90. J. E. Hudson, R. J. Mills, J. E. Frith et al., “A defined medium and substrate for expansion of human mesenchymal stromal cell progenitors that enriches for osteo- and chondrogenic precursors,” Stem Cells and Development, vol. 20, no. 1, pp. 77–87, 2011. View at Publisher · View at Google Scholar
  91. W. J. Bettger and R. G. Ham, “The nutrient requirements of cultured mammalian cells,” Advances in Nutritional Research, vol. 4, pp. 249–286, 1982. View at Google Scholar · View at Scopus
  92. R. G. Ham and W. L. McKeehan, “Development of improved media and culture conditions for clonal growth of normal diploid cells,” In Vitro, vol. 14, no. 1, pp. 11–22, 1978. View at Google Scholar · View at Scopus
  93. B. Deorosan and E. A. Nauman, “The role of glucose, serum, and three-dimensional cell culture on the metabolism of bone marrow-derived mesenchymal stem cells,” Stem Cells International, vol. 2011, Article ID 429187, 12 pages, 2011. View at Publisher · View at Google Scholar
  94. Y. M. Li, T. Schilling, P. Benisch et al., “Effects of high glucose on mesenchymal stem cell proliferation and differentiation,” Biochemical and Biophysical Research Communications, vol. 363, no. 1, pp. 209–215, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. B. R. Weil, A. M. Abarbanell, J. L. Herrmann, Y. Wang, and D. R. Meldrum, “High glucose concentration in cell culture medium does not acutely affect human mesenchymal stem cell growth factor production or proliferation,” American Journal of Physiology, vol. 296, no. 6, pp. R1735–R1743, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. D. W. Rowe, B. J. Starman, W. Y. Fujimoto, and R. H. Williams, “Differences in growth response to hydrocortisone and ascorbic acid by human diploid fibroblasts,” In Vitro, vol. 13, no. 12, pp. 824–830, 1977. View at Google Scholar · View at Scopus
  97. S. Gronthos and P. J. Simmons, “The growth factor requirements of STRO-1-positive human bone marrow stromal precursors under serum-deprived conditions in vitro,” Blood, vol. 85, no. 4, pp. 929–940, 1995. View at Google Scholar · View at Scopus
  98. S. A. Kuznetsov, A. J. Friedenstein, and P. G. Robey, “Factors required for bone marrow stromal fibroblast colony formation in vitro,” British Journal of Haematology, vol. 97, no. 3, pp. 561–570, 1997. View at Google Scholar · View at Scopus
  99. J. Feng, A. H. Melcher, D. M. Brunette, and H. K. Moe, “Determination of L ascorbic acid levels in culture medium: concentrations in commercial media and maintenance of levels under conditions of organ culture,” In Vitro, vol. 13, no. 2, pp. 91–99, 1977. View at Google Scholar · View at Scopus
  100. M. Butler, Animal Cell Culture and Technology, BIOS Scientific Publishers, New York, NY, USA, 2004.
  101. H. Maurer, “Towards serum-free, chemically defined media for mamallian cell culture,” in Animal Cell Culture, R. Freshney, Ed., pp. 15–46, IRL Press, New York, NY, USA, 1992. View at Google Scholar
  102. W. L. McKeehan, W. G. Hamilton, and R. G. Ham, “Selenium is an essential trace nutrient for growth of WI-38 diploid human fibroblasts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 73, no. 6, pp. 2023–2027, 1976. View at Google Scholar · View at Scopus
  103. L. J. Guilbert and N. N. Iscove, “Partial replacement of serum by selenite, transferrin, albumin and lecithin in haemopoietic cell cultures,” Nature, vol. 263, no. 5578, pp. 594–595, 1976. View at Google Scholar
  104. J. H. Kim, M. R. Lee, J. H. Kim, M. K. Jee, and S. K. Kang, “IFATS collection: selenium induces improvement of stem cell behaviors in human adipose-tissue stromal cells via SAPK/JNK and stemness acting signals,” Stem Cells, vol. 26, no. 10, pp. 2724–2734, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. C. Ip, “Lessons from basic research in selenium and cancer prevention,” Journal of Nutrition, vol. 128, no. 11, pp. 1845–1854, 1998. View at Google Scholar · View at Scopus
  106. F. Ng, S. Boucher, S. Koh et al., “PDGF, tgf-2. And FGF signaling is important for differentiation and growth of mesenchymal stem cells (mscs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages,” Blood, vol. 112, no. 2, pp. 295–307, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. L. A. Solchaga, K. Penick, V. M. Goldberg, A. I. Caplan, and J. F. Welter, “Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells,” Tissue Engineering, vol. 16, no. 3, pp. 1009–1019, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Tsutsumi, A. Shimazu, K. Miyazaki et al., “Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF,” Biochemical and Biophysical Research Communications, vol. 288, no. 2, pp. 413–419, 2001. View at Publisher · View at Google Scholar · View at Scopus
  109. C. van den Bos, J. D. Mosca, J. Winkles, L. Kerrigan, W. H. Burgess, and D. R. Marshak, “Human mesenchymal stem cells respond to fibroblast growth factors,” Human cell, vol. 10, no. 1, pp. 45–50, 1997. View at Google Scholar · View at Scopus
  110. S. C. Choi, S. J. Kim, J. H. Choi, C. Y. Park, W. J. Shim, and D. S. Lim, “Fibroblast growth factor-2 and -4 promote the proliferation of bone marrow mesenchymal stem cells by the activation of the PI3K-Akt and ERK1/2 signaling pathways,” Stem Cells and Development, vol. 17, no. 4, pp. 725–736, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. K. Tamama, H. Kawasaki, and A. Wells, “Epidermal growth factor (EGF) treatment on multipotential stromal cells (MSCs). Possible enhancement of therapeutic potential of MSC,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 795385, 10 pages, 2010. View at Publisher · View at Google Scholar
  112. R. I. Freshney, Culture of Animal Cells: A Manual of Basic technique, Wiley-LISS, New York, NY, USA, 2000.
  113. T. Suda and T. M. Dexter, “Effect of hydrocortisone on long-term human marrow cultures,” British Journal of Haematology, vol. 48, no. 4, pp. 661–664, 1981. View at Google Scholar · View at Scopus
  114. S. Wang and S. Z. Haslam, “Serum-free primary culture of normal mouse mammary epithelial and stromal cells,” In Vitro Cellular and Developmental Biology, vol. 30, no. 12, pp. 859–866, 1994. View at Google Scholar · View at Scopus
  115. J. J. Castellot Jr, D. L. Cochran, and M. J. Karnovsky, “Effect of heparin on vascular smooth muscle cells. I. Cell metabolism,” Journal of Cellular Physiology, vol. 124, no. 1, pp. 21–28, 1985. View at Google Scholar · View at Scopus
  116. T. Imaizumi, F. Jean-Louis, M. L. Dubertret, and L. Dubertret, “Heparin induces fibroblast proliferation, cell-matrix interaction and epidermal growth inhibition,” Experimental Dermatology, vol. 5, no. 2, pp. 89–95, 1996. View at Publisher · View at Google Scholar · View at Scopus
  117. P. I. Marcus, G. H. Sato, R. G. Ham, and D. Patterson, “A tribute to Dr. Theodore T. Puck (September 24, 1916-November 6, 2005),” In vitro Cellular & Developmental Biology, vol. 42, no. 8-9, pp. 235–241, 2006. View at Google Scholar · View at Scopus