Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2017 (2017), Article ID 1769298, 10 pages
https://doi.org/10.1155/2017/1769298
Research Article

miR-142-3p Contributes to Early Cardiac Fate Decision of Embryonic Stem Cells

1Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
2Department of Cardiology, Shanghai Xuhui District Central Hospital, Shanghai, China

Correspondence should be addressed to Huang-Tian Yang

Received 26 January 2017; Accepted 9 April 2017; Published 5 June 2017

Academic Editor: Yanfang Chen

Copyright © 2017 Zhong-Yan Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

MicroRNAs (miRNAs) play important roles in cell fate decisions. However, the miRNAs and their targets involved in the regulation of cardiac lineage specification are largely unexplored. Here, we report novel functions of miR-142-3p in the regulation of cardiomyocyte differentiation from mouse embryonic stem cells (mESCs). With a miRNA array screen, we identified a number of miRNAs significantly changed during mESC differentiation into the mesodermal and cardiac progenitor cells, and miR-142-3p was one among the markedly downregulated miRNAs. Ectopic expression and inhibition of miR-142-3p did not alter the characteristics of undifferentiated ESCs, whereas ectopic expression of miR-142-3p impaired cardiomyocyte formation. In addition, ectopic expression of miR-142-3p inhibited the expression of a cardiac mesodermal marker gene Mesp1 and downstream cardiac transcription factors Nkx2.5, Tbx5, and Mef2c but not the expression of three germ layer-specific genes. We further demonstrated that miR-142-3p targeted the 3′-untranslated region of Mef2c. These results reveal miR-142-3p as an important regulator of early cardiomyocyte differentiation. Our findings provide new knowledge for further understanding of roles and mechanisms of miRNAs as critical regulators of cardiomyocyte differentiation.