About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 369549, 29 pages
http://dx.doi.org/10.1155/2010/369549
Research Article

Differential Expression of MicroRNAs between Eutopic and Ectopic Endometrium in Ovarian Endometriosis

1Laboratory of Oncological Gynecology, Department of Clinical and Experimental Medicine, and Biotechnology Center for Applied Medical Research, University of Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy
2Laboratory of Biochemistry, Department of Clinical and Experimental Medicine, and Biotechnology Center for Applied Medical Research, University of Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy

Received 12 March 2009; Revised 10 August 2009; Accepted 19 December 2009

Academic Editor: Sorin Draghici

Copyright © 2010 Nicoletta Filigheddu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Endometriosis, defined as the presence of endometrial tissue outside the uterus, is a common gynecological disease with poorly understood pathogenesis. MicroRNAs are members of a class of small noncoding RNA molecules that have a critical role in posttranscriptional regulation of gene expression by repression of target mRNAs translation. We assessed differentially expressed microRNAs in ectopic endometrium compared with eutopic endometrium in 3 patients through microarray analysis. We identified 50 microRNAs differentially expressed and the differential expression of five microRNAs was validated by real-time RT-PCR in other 13 patients. We identified in silico their predicted targets, several of which match the genes that have been identified to be differentially expressed in ectopic versus eutopic endometrium in studies of gene expression. A functional analysis of the predicted targets indicates that several of these are involved in molecular pathways implicated in endometriosis, thus strengthening the hypothesis of the role of microRNAs in this pathology.

1. Introduction

Endometriosis, defined as the growth of endometrial tissue outside the uterine cavity, is a common gynecological disease often resulting in chronic pelvic pain and infertility. The pathogenesis of endometriosis is likely multifactorial and several hypotheses have been suggested to explain the presence of ectopic endometrial tissue and stroma, such as retrograde menstrual reflux [1], immune system defects [210], and ectopic presence of endometrial stem cells originating the disease [11]. In addition, there is a growing body of evidence indicating the involvement of genetic factors in the etiology of endometriosis, as it has been calculated that there is a 6–9-fold increased prevalence of this pathology among the 1st-degree relatives of women with endometriosis, compared to the general population [1218]. Extensive investigations have been performed to characterize the differences between the eutopic and ectopic endometrium in order to better understand and define the molecular basis of the disease and, indeed, several studies have revealed a distinct pattern of gene expression in eutopic and ectopic endometrium [1924]. The differences in gene expression reported in these works include genes encoding proteins involved in cell adhesion, extracellular matrix remodeling, migration, proliferation, immune system regulation, and inflammatory pathways, thus accounting for the multiple mechanisms hypothesized to be responsible for the establishment of ectopic endometrial implants, including the adhesion of endometrial cells to the pelvic peritoneum, invasion into the mesothelium, and survival and proliferation of the ectopic endometrial cells.

MicroRNAs (miRNAs), members of a class of small non-coding RNA molecules, have a critical role in posttranscriptional regulation of gene expression by repression of target mRNAs translation. Originally identified in Caenorhabditis elegans [25], miRNAs have been shown to operate in a wide range of species, including humans. Computational predictions indicate that up to 30% of human genes are potential targets of miRNAs and that miRNAs compose 1%–5% of animal genomes [2629]. MiRNA expression is tissue- and cell-specific [3033]. It has been demonstrated that miRNAs are important in developmental processes as well as for other cellular activities involving cell growth, differentiation, and apoptosis. Moreover, several genes encoding miRNAs have been located at chromosomal fragile sites or regions of cytogenetic abnormalities associated with cancer and other disorders. Interestingly, miRNAs altered expression has been associated with tumorigenesis, and several studies have described differential expression of miRNAs in neoplastic versus normal tissue [3438].

Our study is aimed to investigate the differential expression of miRNAs in endometriosis by direct comparison between paired ectopic and eutopic endometrium samples. Once we identified the differentially expressed miRNAs, we validated 5 of them by an independent technique. Then, we identified in silico the predicted molecular targets of the differentially expressed miRNAs and we used a bioinformatics tool to investigate the molecular pathways in which these targets could be involved.

2. Materials and Methods

2.1. Tissue Collection

Subjects ( = 16) scheduled for surgery for chronic pelvic pain or infertility at the University of Piemonte Orientale-affiliated “Maggiore della Carità” Hospital were recruited to participate in this study. The study was approved by the “Maggiore della Carità” Hospital’s Institutional Review Board and informed consent was obtained from all participants. None of the authors have any conflict of interest with the study. Surgery was scheduled 6 to 12 days after the onset of menses. No patients were receiving hormone therapy at the time of the study or in the previous three months. The patients ranged in age from 24 to 48 years, with an average of 36 years. Endometriomas were removed at laparoscopy by excision of the entire cyst wall by stripping technique, preserving normal ovarian tissue. Hysteroscopy with directed biopsies, performed to obtain a sample of eutopic endometrium from the same patient, were carried out using a 4 mm Bettocchi Hysteroscope System with a 5 Fr operative channel (Karl Stortz GmbH & Co., Tuttlingen, Germany). Laparoscopy and hysteroscopy procedures were performed during the same surgical intervention. Freshly recovered tissues were rinsed in saline solution and divided in two parts. One half of the tissue was immediately snap-frozen and kept in liquid nitrogen for further processing, while the other was sent to the pathology laboratory. The endometriomas of 9 patients were classified as moderate, while 7 were classified as severe according to the ASRM guidelines [39].

2.2. RNA Isolation

Total RNA was extracted from tissues with the miRNeasy kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s protocol and quantified by Quant-iT RNA Assay Kit with Qubit Fluorometer (Invitrogen, Carlsbad, CA, USA).

2.3. MicroRNA Microarray Assay and Analysis

Microarray assay was performed using a service provider (LC Sciences). Ten g of total RNA from eutopic and ectopic endometrium obtained from three patients were size fractionated using a YM-100 Microcon centrifugal filter (Millipore) and the small RNAs ( 300 nt) isolated were -extended with a poly(A) tail using poly(A) polymerase. An oligonucleotide tag was then ligated to the poly(A) tail for later fluorescent dye staining; two different tags were used for the two RNA samples in dual-sample experiments. Hybridization was performed overnight on a Paraflo microfluidic chip using a microcirculation pump (Atactic Technologies) [40, 41]. On the microfluidic chip, each detection probe consisted of a chemically modified nucleotide coding segment complementary to target 475 mature human miRNA probes (Sanger miRBase sequence database 9.1) or other RNAs for control and a spacer segment of polyethylene glycol to extend the coding segment away from the substrate. The detection probes were made by in situ synthesis using PGR (photogenerated reagent) chemistry. The hybridization melting temperatures were balanced by chemical modifications of the detection probes. Hybridization used 100  L 6 SSPE buffer (0.90 M NaCl, 60 mM Na2HPO4, 6 mM EDTA, pH 6.8) containing 25% formamide at . After RNA hybridization, tag-conjugating Cy3 and Cy5 dyes were circulated through the microfluidic chip for dye staining. Fluorescence images were collected using a laser scanner (GenePix 4000B, Molecular Device) and digitized using Array-Pro image analysis software (Media Cybernetics). Data from miRNA microarray were analyzed by the service provider first subtracting the background and then normalizing the signals using an LOWESS filter (Locally weighted Regression) [42]. The ratio of the two sets of detected signals (log2 transformed, balanced) and -values of the -test were calculated; differentially detected signals were those with less than  .01 -values. Multiple sample analysis involved normalization, data adjustment, -test, and clustering. Normalization was carried out using a cyclic LOWESS. Data adjustment included data filtering, Log2 transformation, and normalization. The -test was performed between “control” and “test” sample groups [43]. -values were calculated for each miRNA, and -values were computed from the theoretical -distribution. miRNAs with -values were selected for cluster analysis. The clustering was done using hierarchical method and was performed with average linkage and Euclidean distance metric [44] using TIGR MultiExperiment Viewer (http://www.tm4.org/mev.html).

2.4. Reverse Transcription and Real-Time PCR

Real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) was performed to confirm the differential expression of selected miRNAs, identified as differentially expressed by miRNA microarray, in paired samples from other 13 patients. TaqMan MicroRNA RT Kit (Applied Biosystems, Foster City, CA) was used for reverse transcription. Real-time RT-PCR reactions were carried out with a 7300 Real-Time PCR System (Applied Biosystems) according to the protocol provided by the supplier, using the TaqMan Universal PCR Master Mix No AmpErase UNG and the following TaqMan MicroRNA Assays: hsa-miR-200a, hsa-miR-200b, hsa-miR-200c, hsa-miR-182, hsa-miR-202, and U18 as endogenous control.

Data from real-time RT-PCR experiments are presented as the mean SEM. The variation among groups was compared by means of nonparametric Wilcoxon and Mann-Whitney tests. Statistical significance was assumed for -values . Statistical analysis was performed with SPSS for Windows version 15.0 (SPSS; Chicago, IL).

3. Results and Discussion

3.1. MicroRNAs Differentially Expressed in Eutopic and Ectopic Endometrial Tissue

In the present study, we used miRNA microarray technology to identify the pattern of miRNAs in paired eutopic/ectopic endometrium from the same patients, thus avoiding the variables attributable to heterogeneous genetic background between individuals and the effects of estrogenic stimulation during different phases of the menstrual cycle. Moreover, we considered the whole endometrial and endometriotic tissues in order to preserve the contribution of all the components of the tissues, including vascular and immune system components and to avoid potential changes in gene and miRNA expression due to cell isolation and manipulation.

Microarray technology has allowed a global analysis of all miRNAs differentially expressed in ectopic versus eutopic endometrium. The initial analysis of miRNA expression in ectopic endometrium compared with eutopic endometrium of three patient samples generated a list of 84 miRNAs significantly differentially expressed ( -values ). The 50 miRNAs for which the expression value in ectopic endometrium was at least twofold higher or lower than in eutopic endometrium are listed in Table 1.

tab1
Table 1: Differentially expressed miRNAs in ectopic versus eutopic endometrium. List of differentially expressed miRNAs whose expression value in ectopic endometrium was at least twofold higher or lower than in eutopic endometrium .01.
3.2. Real Time RT-PCR Analysis of miRNA Expression

In order to confirm the results obtained with miRNA microarray, the expression analyses of 5 selected miRNAs was carried out by real-time RT-PCR on specimens from other 13 patients. These 5 miRNAs, namely, hsa-miR-200a, hsa-miR-200b, hsa-miR-200c, hsa-miR-182, and hsa-miR-202, were selected because their expression resulted to be highly altered in ectopic endometrium compared with the matched eutopic tissue. We verified the differential expression of the selected miRNAs in the ectopic tissue by setting as 1 the expression of eutopic miRNAs. The results obtained by real-time RT-PCR are in accordance with those obtained from the microarray. Indeed, these miRNAs showed significant differential expression ( -values   .05) in eutopic versus ectopic tissue: hsa-miR-200a, hsa-miR-200b, hsa-miR-200c, and hsa-miR-182 levels in ectopic endometrium were reduced up to 95% (Figures 1(a)1(d)), while hsa-miR-202 expression in ectopic endometrium was increased up to 60 folds compared to eutopic endometrium (Figure 1(e)). The analysis of data according to the severity of the endometrioma, by means of nonparametric Wilcoxon and Mann-Whitney tests, failed to reveal any significant differences in miRNA expression levels, although this may be ascribable to the group size. Further studies increasing the cohort will be necessary to completely address this issue.

fig1
Figure 1: Differential expression of miRNAs in ectopic versus eutopic endometrium. The miRNAs selected for independent validation were among those with wider difference in expression between eutopic and ectopic endometrium. The differential expression of the selected miRNAs in the ectopic versus eutopic tissues was evaluated by real-time RT-PCR. The expression of each miRNA in eutopic tissue was set to 1. (a) hsa-miR-200a, (b) hsa-200b, (c) hsa-miR-200c, (d) hsa-miR-182, and (e) hsa-miR-202.   .05.
3.3. Identification of Predicted miRNA Targets and In Silico Functional Analysis

The predicted target mRNAs of the differentially expressed miRNAs common to two different search algorithms, TARGETSCAN (http://www.targetscan.org/) and PICTAR-VERT (http://pictar.mdc-berlin.de), were 3093. The functions of these predicted targets and the molecular pathways in which they could be involved were assessed using Ingenuity Pathways Analysis software (Ingenuity IPA 7.5). The predicted targets were uploaded in IPA, and the software identified 49 significant molecular networks to which the predicted targets of the differentially expressed miRNAs belong (Table 2). Among the biological functions reported to be statistically significant by IPA there were functions known to be involved in endometriosis such as gene expression, cellular growth and proliferation, cellular development, cellular movement, cell death, cell cycle, cancer, and reproductive system disorders. One of the subcategories of reproductive system disorders to be more represented, with -value (calculated by Fisher’s Exact test) of , was endometriosis with 119 molecules directly involved in this pathology (Table 3).

tab2
Table 2: Molecular networks constituted by the predicted miRNA targets. IPA analysis was performed in order to identify the molecular pathways and functions to which the predicted targets of the differentially expressed miRNAs belong. The networks are generated on the basis of the published literature and ranked by the -value calculated by Fisher’s exact Test. The biological processes in which the targets are involved are determined by IPA using the GOstat application .
tab3
Table 3: Molecules directly involved in endometriosis and networks in which they appear. IPA analysis indicated that several networks constituted by the predicted targets of the differentially expressed miRNAs include molecules known to be involved in endometriosis.

An exemplificative network identified by IPA enriched for miRNA targets involved in endometriosis is shown in Figure 2. This network, converging on estrogen receptor 1 (ESR1), includes the DNA methyltransferases DNMT3A and DNMT3B that are validated targets of hsa-miR-29b and hsa-miR-29c, and of hsa-miR-29b, hsa-miR-29c, and hsa-miR-148a, respectively [45, 46]. DNA methylation is an epigenetic modification that is involved in gene silencing, chromatin remodeling, and genome stability [47]. It has been demonstrated that DNMT1, DNMT3A, and DNMT3B are disregulated in endometriosis [48], and it has been suggested that aberrant methylation of HOXA10 and of the progesterone receptor PR-B may be responsible of the disregulation of their expression in endometriosis. Thus, this network strongly suggests a possible involvement of miRNAs in these mechanisms.

369549.fig.002
Figure 2: Functional analysis of all the predicted targets of the differentially expressed miRNAs. Graphical representation of network #2 obtained by IPA analysis. Genes are represented as nodes, and the biological relationship between two nodes is represented as a line. Every line is supported by at least one reference in literature. Highlighted, the genes involved in endometriosis according to IPA knowledge base.

To further analyze the possible role of these differentially expressed miRNAs in endometriosis, we performed a different analysis uploading the miRNAs directly in IPA. In this way, the software identified 6 networks, 3 of which are highly significant with known biological functions including genetic disorders, connective tissue disorders, skeletal and muscular disorders, cancer, and reproductive system disorders (Table 4).

tab4
Table 4: Molecular networks constituted by the predicted miRNA targets. The list of differentially expressed miRNAs was directly uploaded in IPA and an analysis was performed in order to identify the molecular pathways and functions to which the predicted targets of the differentially expressed miRNAs belong. The database used by IPA to analyze miRNAs and their targets is Argonaute2 (http://www.ma.uni-heidelberg.de/apps/zmf/argonaute/). .

The difference in the number of networks identified by IPA is ascribable to the different database used by the software, as IPA uses the Argonaute 2 databases (http://www.ma.uni-heidelberg.de/apps/zmf/argonaute/) to analyse miRNAs and their known or predicted targets, and this database identified only 118 targets for the 50 miRNAs.

Next, we performed an IPA analysis on the 1203 predicted targets of the miRNAs whose differential expression between eutopic and ectopic tissue was confirmed by real-time RT-PCR. IPA software identified 49 networks and revealed that the predicted targets were enriched for biological functions such as cellular development, cell morphology, cell-mediated immune response, gene expression, cell cycle, cell death, cancer, and developmental disorders. The network with the highest score from this analysis, shown in Figure 3, includes molecules that have been implicated in endometriosis such as the TNF receptor, IL10, IL6, and FOXO1 [4955].

369549.fig.003
Figure 3: Functional analysis of the predicted targets of miR-182, miR-200a, miR-200b, miR-200c, and miR-202 identified by Pictar and Targetscan: graphical representation of one of the network ( -value = 10E−37, focus molecules = 35) identified by IPA analysis of the predicted targets of the miRNAs whose differential expression in eutopic and ectopic endometrium was validated by real-time RT-PCR. Highlighted are the genes involved in endometriosis according to IPA knowledge base.

Performing the analysis uploading directly the miRNAs in IPA, thus using the Argonaute2 database, the software identified only one network (Figure 4), the major biological functions of which are cell cycle, cell death, and connective tissue disorders. This network contains PIK3R1, and its expression has been demonstrated to be upregulated in endometriosis, were it can play an essential role in TNF-mediated antiapoptotic signaling [56]. Another interesting molecule present in this pathway is SIP1, a validated target of the miR-200 family, which is a factor implicated in epithelial to mesenchymal transition and tumor metastasis [57]. Thus, the observed downregulation of miR-200 family in the ectopic endometrium may have a role in the endometrial lesion development.

369549.fig.004
Figure 4: Functional analysis of the predicted targets of miR-182, miR-200a, miR-200b, miR-200c, and miR-202 identified by Argonaute2: graphical representation of the network identified by IPA analysis of the miRNAs and their predicted targets using the database generated by Argonaute2 algorithm ( -value = 10E−14, focus molecules = 4).

We further investigated the function of the predicted targets of the RT-PCR-validated miRNAs by using Onto-Express and Pathway-Express (http://vortex.cs.wayne.edu/) in order to categorize the targets according to Gene Ontology (GO) and KEGG pathways, respectively [58, 59]. The predicted targets of the validated miRNAs were uploaded in Onto-Express and the list of the putative targets of the 475 miRNAs assayed was used as reference. Onto-Express calculates the mRNA targets in each GO category and compares it with the expected number of targets present in the GO category. Significant differences from the expected number of genes were calculated assuming a hypergeometric distribution, and values were adjusted with the false discovery rate correction based on the number of GO categories tested. A corrected value was considered statistically significant. Onto-Express analysis revealed enrichment for several biological processes known to be relevant in endometriosis, such as developmental process, cell death, cell cycle, and cell adhesion (Table 5).

tab5
Table 5: Gene Ontology analysis of the predicted target genes of 50 miRNAs differentially expressed. Onto-Express analysis on predicted targets of the differentially expressed miRNAs identified enrichment for biological process categories. The gene column indicates the number of predicted targets of the differentially expressed miRNAs upon the number of the targets of all miRNAs considered for the study. Significant differences from the number of targets in each GO category with the expected number of genes were calculated with the assumption of a hypergeometric distribution and P-values were adjusted with the false discovery rate (fdr) correction. .

Pathway-Express analysis identified 33 pathways significant at 5% level (Table 6), most of which are coherent with the current knowledge on endometriosis. For instance, the most significant pathways putatively affected by the differential expression of miRNAs are MAPK and axon guidance the latter shown in Figure 5. While MAPK pathway, which is involved in several cellular functions, such as cell proliferation, migration, and differentiation, is clearly relevant for endometriosis, axon guidance, at first may appear unrelated to this pathology. However, nerves and blood vessels are highly interconnected, both physically and in their morphogenesis. Indeed, it has been demonstrated that several molecules involved in axon guidance, such as semaphorins, plexins, and neuropilins, are also strongly implicated in angiogenesis [60], a biological process essential for endometriosis. Intriguingly, this pathway contains ROBO1, and its expression, higher in ectopic endometrium compared to eutopic tissue, positively correlates with endometriosis recurrence [61], thus suggesting that miRNAs may take part in tuning ROBO1 expression and have a role in the recurrence of the pathology.

tab6
Table 6: KEGG pathways containing the predicted targets of the differentially expressed miRNAs. Pathway-Express analysis identified the KEGG molecular pathways affected by the predicted targets of the differentially expressed miRNAs. .
369549.fig.005
Figure 5: The axon guidance pathway identified by Pathway-Express analysis. Pathway-Express analysis performed on the predicted targets of the 50 differentially expressed miRNAs identified, among the most significant KEGG pathways predicted to be relevant for endometriosis, the axon guidance pathway. In yellow are the predicted targets of the differentially expressed miRNAs.
3.4. Genes Differentially Expressed in Endometriosis Are Predicted Targets of the Differentially Expressed miRNAs

Finally, after the identification of the predicted targets of the differentially expressed miRNAs, we investigated whether they were in accordance with the results of two studies of gene expression in endometriosis. We first analysed the genes reported to be differentially expressed in a study on paired eutopic and ectopic samples of ovarian endometriosis [23]. This study identified 701 differentially expressed transcripts (expression 0.2; fold change 2; ), 82 of which are predicted target genes of the 50 miRNAs, 51/492 upregulated and 31/209 downregulated. A second study on peritoneal endometriosis [24] identified 622 differentially expressed transcripts (fold change 1.5; ), 107 of which are predicted targets of the differentially expressed miRNAs, 73/232 upregulated and 34/390 downregulated. Hypothesising that the genes differentially expressed common to both studies are likely those specific to endometriosis independently from the site of the lesion, we restricted the analysis to the differentially regulated genes in eutopic and ectopic endometrium common to the two studies that are also predicted targets of the 50 miRNAs (Table 7). IPA analysis identified 5 molecular networks, the most relevant functions of which being cancer, cell cycle, and reproductive system disease (Table 8). The overlap of networks generated by IPA is shown in Figure 6. In this graphical representation the most relevant nodes are the transcription factor SP1, tumor necrosis factor (TNF), and SRC, in remarkable agreement with the nodes of the most significant networks obtained by IPA analysis performed on the distinct datasets of differentially expressed genes in ovarian and peritoneal endometriosis (data not shown).

tab7
Table 7: Genes aberrantly expressed in ovarian and peritoneal endometriosis that are predicted targets of the differentially expressed miRNAs. The miRNAs predicted to regulate the expression of the genes known to be aberrantly up- ( ) or downregulated ( ) in both ovarian and peritoneal endometriosis were identified by TARGETSCAN and PICTAR algorithms. MicroRNAs whose regulation is in accordance with the resulting expression of their predicted target genes are reported in bold.
tab8
Table 8: Molecular networks constituted by the common differentially expressed transcripts in ovarian and peritoneal endometriosis predicted to be targets of the 50 miRNAs. Differentially expressed genes common to both ovarian and peritoneal endometriosis that are predicted targets of the 50 differentially expressed miRNAs were uploaded in IPA in order to identify the molecular networks and functions to which they belong. .
369549.fig.006
Figure 6: Functional analysis of the differentially regulated genes common in ovarian and peritoneal endometriosis that are predicted targets of the 50 miRNAs: Graphical representation of the overlap of the networks identified by IPA with, highlighted are the genes involved in endometriosis according to IPA knowledge base.

4. Conclusions

MicroRNAs are predicted to regulate a large fraction of protein-coding genes, as computational analysis reveals that an average miRNA could have as many as 100 or more target genes. On the other hand, a single gene may have target sites for several distinct miRNAs, allowing a fine tuning of gene expression by miRNAs.

In the present study, we used miRNA microarray technology to identify the miRNAs differentially expressed in paired eutopic/ectopic endometrium from the same patients and bioinformatics tools to identify their predicted targets as well as the molecular networks and the biological functions they may affect.

Comparing miRNA expression profiles among the different subjects, we identified 50 miRNAs differentially expressed in ectopic versus eutopic samples. Several of these miRNAs were also reported to be differentially expressed in two recent studies [62, 63], although with a modulation occasionally discordant from our results. This, joint to a notable accordance between their predicted targets and the genes reported to be differentially expressed in two studies of gene expression [23, 24], consolidates the hypothesis of a possible role of miRNAs in the pathogenesis of endometriosis.

The miRNAs-predicted targets were identified by the intersection of the results from two different search algorithms, and the biological functions the differentially expressed miRNA may affect were identified by Onto-Express and IPA software. Functional analysis, performed using IPA software, was carried out uploading either the predicted targets or the differentially expressed miRNAs, thus using different databases for miRNA targets. As expected, the different algorithms used to predict miRNA targets led to the identification of different molecular networks. Still, in both cases, the identified networks contained several transcripts known to be implicated in endometriosis and with their main biological functions linked to the disease. Since the targets of miRNAs are just predictions based on mathematical algorithms, the choice of the algorithm may radically modify on the whole the list of the predicted target genes and that of the molecular networks they belong to. For this reason, the validation of miRNA targets in vitro, in a cellular system, is essential to evaluate the contribution of each miRNA to the overall modulation of gene expression.

Acknowledgments

The authors gratefully acknowledge Flavia Prodam for assistance with statistical analysis, Francesca Riboni for skilled help in collecting samples, Paolo Borasio and Chiara Airoldi for the assistance in databases analysis, and Michele Ferrara for his valuable help in preparing this manuscript. N. Filigheddu and I. Gregnanin contributed equally to this work

References

  1. R. F. Kruitwagen, L. G. Poels, W. N. P. Willemsen, I. J. Y. de Ronde, P. H. K. Jap, and R. Rolland, “Endometrial epithelial cells in peritoneal fluid during the early follicular phase,” Fertility and Sterility, vol. 55, no. 2, pp. 297–303, 1991. View at Scopus
  2. W. P. Dmowski, R. W. Steele, and G. F. Baker, “Deficient cellular immunity in endometriosis,” American Journal of Obstetrics and Gynecology, vol. 141, no. 4, pp. 377–383, 1981. View at Scopus
  3. S. M. Gilmore, S. Aksel, C. Hoff, and R. D. A. Peterson, “In vitro lymphocyte activity in women with endometriosis—an altered immune response?” Fertility and Sterility, vol. 58, no. 6, pp. 1148–1152, 1992. View at Scopus
  4. S. Z. A. Badawy, V. Cuenca, H. Freliech, and C. Stefanu, “Endometrial antibodies in serum and peritoneal fluid of infertile patients with and without endometriosis,” Fertility and Sterility, vol. 53, no. 5, pp. 930–932, 1990. View at Scopus
  5. P. V. Taylor, M. D. Maloney, J. M. Campbell, et al., “Autoreactivity in women with endometriosis,” British Journal of Obstetrics and Gynaecology, vol. 98, no. 7, pp. 680–684, 1991. View at Scopus
  6. A. F. Haney, J. J. Muscato, and J. B. Weinberg, “Peritoneal fluid cell populations in infertility patients,” Fertility and Sterility, vol. 35, no. 6, pp. 696–698, 1981. View at Scopus
  7. L. Van Le, S.-T. Oh, J. A. Anners, C. A. Rinehart, and J. Halme, “Interleukin-1 inhibits growth of normal human endometrial stromal cells,” Obstetrics and Gynecology, vol. 80, no. 3, pp. 405–409, 1992. View at Scopus
  8. D. Semer, K. Reisler, P. C. MacDonald, and M. L. Casey, “Responsiveness of human endometrial stromal cells to cytokines,” Annals of the New York Academy of Sciences, vol. 622, pp. 99–110, 1991.
  9. N. Rana, D. P. Braun, R. House, H. Gebel, C. Rotman, and W. P. Dmowski, “Basal and stimulated secretion of cytokines by peritoneal macrophages in women with endometriosis,” Fertility and Sterility, vol. 65, no. 5, pp. 925–930, 1996. View at Scopus
  10. S. E. Rier, A. K. Parsons, and J. L. Becker, “Altered interleukin-6 production by peritoneal leukocytes from patients with endometriosis,” Fertility and Sterility, vol. 61, no. 2, pp. 294–299, 1994. View at Scopus
  11. I. E. Sasson and H. S. Taylor, “Stem cells and the pathogenesis of endometriosis,” Annals of the New York Academy of Sciences, vol. 1127, pp. 106–115, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. S. Kennedy, R. Hadfield, C. Westbrook, D. E. Weeks, D. Barlow, and S. Golding, “Magnetic resonance imaging to assess familial risk in relatives of women with endometriosis,” The Lancet, vol. 352, no. 9138, pp. 1440–1441, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. J. L. Simpson, S. Elias, L. R. Malinak, and V. C. Buttram Jr., “Heritable aspects of endometriosis. I. Genetic studies,” American Journal of Obstetrics and Gynecology, vol. 137, no. 3, pp. 327–331, 1980. View at Scopus
  14. D. Coxhead and E. J. Thomas, “Familial inheritance of endometriosis in a British population. A case control study,” Journal of Obstetrics and Gynaecology, vol. 13, no. 1, pp. 42–44, 1993. View at Scopus
  15. M. H. Moen and P. Magnus, “The familial risk of endometriosis,” Acta Obstetricia et Gynecologica Scandinavica, vol. 72, no. 7, pp. 560–564, 1993. View at Scopus
  16. S. Kennedy, R. Hadfield, H. Mardon, and D. Barlow, “Age of onset of pain symptoms in non-twin sisters concordant for endometriosis,” Human Reproduction, vol. 11, no. 2, pp. 403–405, 1996. View at Scopus
  17. S. Kennedy, “The genetics of endometriosis,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 82, no. 2, pp. 129–133, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Kennedy, S. Bennett, and D. E. Weeks, “Affected sib-pair analysis in endometriosis,” Human Reproduction Update, vol. 7, no. 4, pp. 411–418, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Meola, J. C. Rosa e Silva, D. B. Dentillo, et al., “Differentially expressed genes in eutopic and ectopic endometrium of women with endometriosis,” 2009, Fertility and Sterility. [Epub ahead of print]. View at Publisher · View at Google Scholar · View at PubMed
  20. H. Honda, F. F. Barrueto, J. Gogusev, D. D. Im, and P. J. Morin, “Serial analysis of gene expression reveals differential expression between endometriosis and normal endometrium. Possible roles for AXL and SHC1 in the pathogenesis of endometriosis,” Reproductive Biology and Endocrinology, vol. 6, article 59, 2008. View at Publisher · View at Google Scholar · View at PubMed
  21. W.-P. Hu, S. K. Tay, and Y. Zhao, “Endometriosis-specific genes identified by real-time reverse transcription-polymerase chain reaction expression profiling of endometriosis versus autologous uterine endometrium,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 1, pp. 228–238, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. Y. Wu, A. Kajdacsy-Balla, E. Strawn, et al., “Transcriptional characterizations of differences between eutopic and ectopic endometrium,” Endocrinology, vol. 147, no. 1, pp. 232–246, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. K. M. Eyster, O. Klinkova, V. Kennedy, and K. A. Hansen, “Whole genome deoxyribonucleic acid microarray analysis of gene expression in ectopic versus eutopic endometrium,” Fertility and Sterility, vol. 88, no. 6, pp. 1505–1533, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. M. L. Hull, C. R. Escareno, J. M. Godsland, et al., “Endometrial-peritoneal interactions during endometriotic lesion establishment,” American Journal of Pathology, vol. 173, no. 3, pp. 700–715, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. R. C. Lee, R. L. Feinbaum, and V. Ambros, “The C. elegance heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14,” Cell, vol. 75, pp. 843–854, 1993.
  26. E. C. Lai, P. Tomancak, R. W. Williams, and G. M. Rubin, “Computational identification of Drosophila microRNA genes,” Genome Biology, vol. 4, no. 7, article R42, 2003.
  27. L. P. Lim, N. C. Lau, E. G. Weinstein, et al., “The microRNAs of Caenorhabditis elegans,” Genes and Development, vol. 17, no. 8, pp. 991–1008, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. L. P. Lim, N. C. Lau, P. Garrett-Engele, et al., “Microarray analysis shows that some microRNAs downregulate large numbers of-target mRNAs,” Nature, vol. 433, no. 7027, pp. 769–773, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. P. Xu, S. Y. Vernooy, M. Guo, and B. A. Hay, “The Drosophila microRNA mir-14 suppresses cell death and is required for normal fat metabolism,” Current Biology, vol. 13, no. 9, pp. 790–795, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Brennecke, D. R. Hipfner, A. Stark, R. B. Russell, and S. M. Cohen, “bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila,” Cell, vol. 113, no. 1, pp. 25–36, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Dostie, Z. Mourelatos, M. Yang, A. Sharma, and G. Dreyfuss, “Numerous microRNPs in neuronal cells containing novel microRNAs,” RNA, vol. 9, no. 2, pp. 180–186, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Dostie, Z. Mourelatos, M. Yang, A. Sharma, and G. Dreyfuss, “Erratum: numerous microRNPs in neuronal cells containing novel microRNAs,” RNA, vol. 9, no. 5, pp. 631–632, 2003.
  34. V. Ambros, “The functions of animal microRNAs,” Nature, vol. 431, no. 7006, pp. 350–355, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. B. M. Engels and G. Hutvagner, “Principles and effects of microRNA-mediated post-transcriptional gene regulation,” Oncogene, vol. 25, no. 46, pp. 6163–6169, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. M. Jovanovic and M. O. Hengartner, “miRNAs and apoptosis: RNAs to die for,” Oncogene, vol. 25, no. 46, pp. 6176–6187, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. R. Garzon, M. Fabbri, A. Cimmino, G. A. Calin, and C. M. Croce, “MicroRNA expression and function in cancer,” Trends in Molecular Medicine, vol. 12, no. 12, pp. 580–587, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. G. A. Calin and C. M. Croce, “MicroRNA signatures in human cancers,” Nature Reviews Cancer, vol. 6, no. 11, pp. 857–866, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. M. Canis, J. G. Donnez, D. S. Guzick, et al., “Revised american society for reproductive medicine classification of endometriosis: 1996,” Fertility and Sterility, vol. 67, no. 5, pp. 817–821, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. X. Gao, E. Gulari, and X. Zhou, “In situ synthesis of oligonucleotide microarrays,” Biopolymers, vol. 73, no. 5, pp. 579–596, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. Q. Zhu, A. Hong, N. Sheng, et al., “microParaflo biochip for nucleic acid and protein analysis,” Methods in Molecular Biology, vol. 382, pp. 287–312, 2007. View at Scopus
  42. B. M. Bolstad, R. A. Irizarry, M. Astrandand, and T. P. Speed, “A comparison of normalization methods for high density oligonucleotide array data based on variance and bias,” Bioinformatics, vol. 19, no. 2, pp. 185–193, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Pan, “A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments,” Bioinformatics, vol. 18, no. 4, pp. 546–554, 2002. View at Scopus
  44. M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster analysis and display of genome-wide expression patterns,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 25, pp. 14863–14868, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Fabbri, R. Garzon, A. Cimmino, et al., “MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 40, pp. 15805–15810, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. A. M. Duursma, M. Kedde, M. Schrier, C. le Sage, and R. Agami, “miR-148 targets human DNMT3b protein coding region,” RNA, vol. 14, no. 5, pp. 872–877, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. P. A. Jones and S. B. Baylin, “The epigenomics of cancer,” Cell, vol. 128, no. 4, pp. 683–692, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. Y. Wu, E. Strawn, Z. Basir, G. Halverson, and S.-W. Guo, “Aberrant expression of deoxyribonucleic acid methyltransferases DNMT1, DNMT3A, and DNMT3B in women with endometriosis,” Fertility and Sterility, vol. 87, no. 1, pp. 24–32, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. A. Kharfi, Y. Labelle, J. Mailloux, and A. Akoum, “Deficient expression of tumor necrosis factor receptor type 2 in the endometrium of women with endometriosis,” American Journal of Reproductive Immunology, vol. 50, no. 1, pp. 33–40, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. S. Antsiferova, N. Yu. Sotnikova, L. V. Posiseeva, and A. L. Shor, “Changes in the T-helper cytokine profile and in lymphocyte activation at the systemic and local levels in women with endometriosis,” Fertility and Sterility, vol. 84, no. 6, pp. 1705–1711, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. O. A. Odukoya, R. Ajjan, K. Lim, P. F. Watson, A. P. Weetman, and I. D. Cooke, “The pattern of cytokine mRNA expression in ovarian endometriomata,” Molecular Human Reproduction, vol. 3, no. 5, pp. 393–397, 1997. View at Scopus
  52. T. Tsudo, T. Harada, T. Iwabe, et al., “Altered gene expression and secretion of interleukin-6 in stromal cells derived from endometriotic tissues,” Fertility and Sterility, vol. 73, no. 2, pp. 205–211, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. C. M. Kyama, L. Overbergh, S. Debrock, et al., “Increased peritoneal and endometrial gene expression of biologically relevant cytokines and growth factors during the menstrual phase in women with endometriosis,” Fertility and Sterility, vol. 85, no. 6, pp. 1667–1675, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. R. O. Burney, S. Talbi, A. E. Hamilton, et al., “Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis,” Endocrinology, vol. 148, no. 8, pp. 3814–3826, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. K. Shazand, S. Baban, C. Prive, et al., “FOXO1 and c-jun transcription factors mRNA are modulated in endometriosis,” Molecular Human Reproduction, vol. 10, no. 12, pp. 871–877, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. S. Matsuzaki, M. Canis, C. Vaurs-Barrière, O. Boespflug-Tanguy, B. Dastugue, and G. Mage, “DNA microarray analysis of gene expression in eutopic endometrium from patients with deep endometriosis using laser capture microdissection,” Fertility and Sterility, vol. 84, supplement 2, pp. 1180–1190, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. P. A. Gregory, A. G. Bert, E. L. Paterson, et al., “The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1,” Nature Cell Biology, vol. 10, no. 5, pp. 593–601, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. P. Khatri, P. Bhavsar, G. Bawa, and S. Draghici, “Onto-tools: an ensemble of web-accessible ontology-based tools for the functional design and interpretation of high-throughput gene expression experiments,” Nucleic Acids Research, vol. 32, pp. W449–W456, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. S. Draghici, P. Khatri, A. L. Tarca, et al., “A systems biology approach for pathway level analysis,” Genome Research, vol. 17, no. 10, pp. 1537–1545, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. Y. Zhou, R.-A. F. Gunput, and R. J. Pasterkamp, “Semaphorin signaling: progress made and promises ahead,” Trends in Biochemical Sciences, vol. 33, no. 4, pp. 161–170, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. F. Shen, X. Liu, J.-G. Geng, and S.-W. Guo, “Increased immunoreactivity to SLIT/ROBO1 in ovarian endometriomas: a likely constituent biomarker for recurrence,” American Journal of Pathology, vol. 175, no. 2, pp. 479–488, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. Q. Pan, X. Luo, T. Toloubeydokhti, and N. Chegini, “The expression profile of micro-RNA in endometrium and endometriosis and the influence of ovarian steroids on their expression,” Molecular Human Reproduction, vol. 13, no. 11, pp. 797–806, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. E. M. C. O. Teague, K. H. Van der Hoek, M. B. Van der Hoek, et al., “MicroRNA-regulated pathways associated with endometriosis,” Molecular Endocrinology, vol. 23, no. 2, pp. 265–275, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus