Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2012 (2012), Article ID 706094, 16 pages
http://dx.doi.org/10.1155/2012/706094
Research Article

Effect of Silicon, Titanium, and Zirconium Ion Implantation on NiTi Biocompatibility

1Institute of Strength Physics and Materials Science, SB RAS, Akademichesky 2/4, Tomsk 634021, Russia
2Institute of Chemical Biology and Fundamental Medicine, SB RAS, Lavrent'eva 8, Novosibirsk 630090, Russia

Received 31 March 2011; Accepted 19 September 2011

Academic Editor: W. Ensinger

Copyright © 2012 L. L. Meisner et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. A. Abugov, M. V. Puretsky, P. A. Rudenko et al., “Endovascular stenting of bifurcation stenosis in patients with ischemic heart disease,” Kardiologia, no. 8, pp. 7–11, 1998 (Russian). View at Google Scholar
  2. A. V. Sidelnikov, “Comparative evaluation of long-term effects of coronary artery stenting with a Crossflex wire stent and transluminal balloon angioplasty in IHD patients” (Russian), Candidate dissertation in medicine, Moscow, Russia, p. 20, 2002.
  3. I. I. Kornilov, O. K. Belousov, and E. V. Kachur, Titanium Nickelide and Other Shape Memory Alloys, Nauka, Moscow, Russia, 1977.
  4. A. I. Lotkov, V. N. Khachin, V. N. Grishkov, L.L. Meisner, and V. P. Sivokha, “Shape memory alloys,” in Physical Mesomechanics and Computer-Aided Design of Materials, vol. 2, pp. 202–213, Nauka, Novosibirsk, Russia, 1995. View at Google Scholar
  5. V. N. Zhuravlev and V. G. Pushin, Thermomechanical Shape Memory Alloys and Their Application in Medicine, UrB RAS, Ekaterinburg, Russia, 2000.
  6. L. L. Meisner, “Mechanical and physicochemical properties of NiTi-based alloys with thin surface layers modified by charged particle flows,” Physical Mesomechanics, vol. 7, part 2, pp. 169–172, 2004. View at Google Scholar
  7. A. I. Lotkov, L. L. Meisner, and V. N. Grishkov, “NiTi-based alloys: ion-beam, plasma, and chemical surface modification,” Fizika Metallov i Metallovedenie, vol. 99, no. 2, pp. 1–13, 2005 (Russian). View at Google Scholar
  8. D. Williams, Biocompatibility of Clinical Implant Materials, CRC Press, Boca Raton, Fla, USA, 1981.
  9. S. A. Shabalovskaya, J. Anderegg, F. Laab, P. A. Thiel, and G. Rondelli, “Surface conditions of NiTinol wires, tubing, and as-cast alloys. The effect of chemical etching, aging in boiling water, and heat treatment,” Journal of Biomedical Materials Research: Part B, vol. 65, no. 1, pp. 193–203, 2003. View at Google Scholar · View at Scopus
  10. V. I. Sevostianov, Ed., Biocompatibility, 1999.
  11. V. P. Shakhov, I. A. Khlusov, G. S. Dambaev et al., “Methods of analysis of cellular cultures, artificial organs, and biomaterials,” in Introduction into Methods for Cell Culture, Bioengineering of Organs and Tissues, pp. 340–349, STT, Tomsk, Russia, 2004. View at Google Scholar
  12. N. A. Korzh, L. A. Kladchenko, and S. V. Malyshkina, “Implant materials and osteogenesis. Role of optimization and stimulation in bone repair,” Orthop. Traum. Protez., no. 4, pp. 5–14, 2008 (Russian). View at Google Scholar
  13. E. V. Vladimirskaya, O. A. Maiorova, S. A. Rumyantsev, and A. G. Rumyantsev, “Stem cells and intercellular interactions,” in Biological Basis and Prospects of Stem Cell Therapy, pp. 74–102, Medpraktica-M, Moscow, Russia, 2005. View at Google Scholar
  14. S. A. Kuznetsov, A. J. Friedenstein, and P. G. Robey, “Factors required for bone marrow stromal fibroblast colony formation in vitro,” The British Journal of Haematology, vol. 97, no. 3, pp. 561–570, 1997. View at Google Scholar · View at Scopus
  15. D. C. Miller, K. M. Haberstroh, and T. J. Webster, “PLGA nanometer surface features manipulate fibronectin interaction for improved vascular cell adhesion,” Journal of Biomedical Materials Research: A, vol. 81, pp. 678–684, 2006. View at Google Scholar
  16. S. M. Chesnokov, “Wide-aperture ion source,” RF patent number RU 1598757, registered in the State Register 16.11.93.
  17. V. P. Sergeev, V. P. Yanovsky, and Yu. N. Paraev, “Extended ion source,” RF patent number RU 2261497, Bulletin of inventions number 27, 2005.
  18. A. I. Lotkov, S. G. Psakhie, and V. P. Sergeev, “Formation of nonequilibrium states in surface layers of materials by electron-ion plasma technologies,” in Surface Nanoengineering, N. Z. Lyakhov and S. G. Psakhie, Eds., pp. 227–275, Publishing house of SB RAS, Novosibirsk, Russia, 2008. View at Google Scholar
  19. D. I. Potter, M. Ahmed, and S. Lamond, “Microstructural developments during implantation of metals,” in Proceedings of the Ion Implantation and Ion Beam Processing of Materials, vol. 27 of Materials Research Society Symposia Proceedings, pp. 117–126, 1984.
  20. J. K. Hirvonen, Ed., Ion Implantation into Metals, Metallurgia, Moscow, Russia, translation from English edited by O. P. Elyutin, 1985.
  21. L. Clapham, “High dose, heavy ion implantation into metals: the use of sacrificial surface layers to enhance retention,” Surface and Coatings Technology, vol. 65, no. 1–3, pp. 24–29, 1994. View at Google Scholar · View at Scopus
  22. M. Nastasi, J. W. Mayer, and J. K. Hirvonen, Ion-Solid Interactions: Fundamentals and Applications, vol. XXVII of Cambridge Solid State Science Series, Cambridge University Press, Cambridge, UK, 1996.
  23. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Google Scholar · View at Scopus
  24. T. Yu. Tatarenko-Kozmina, Pathophysiological mechanisms of application of mesenchymal stem cells on synthetic composites for optimization of bone tissue regeneration, Doctoral dissertation in biology, Moscow, Russia, 2007.
  25. N. A. Plokhinsky, Biometry, MSU Publishing House, Moscow, Russia, 1970.
  26. A. G. Akimov, “On the mechanisms of the formation of protective oxide layers in “metal (alloy)—medium“ systems,” Zashchita Metallov, vol. XXII, no. 6, pp. 879–886, 1986 (Russian). View at Google Scholar
  27. L. L. Meisner, V. P. Sivokha, A. I. Lotkov, and E. G. Barmina, “Corrosion resistance of quasibinary NiTi–TiAu alloys in biochemical solutions,” Fiz. Khim. Obr. Mater., no. 1, pp. 78–84, 2006 (Russian). View at Google Scholar
  28. S. A. Shabalovskaya, H. Tian, J. W. Anderegg, D. U. Schryvers, W. U. Carroll, and J. V. Humbeeck, “The influence of surface oxides on the distribution and release of nickel from Nitinol wires,” Biomaterials, vol. 30, no. 4, pp. 468–477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. L. L. Meisner, V. P. Sivokha, A. I. Lotkov, and L. A. Derevyagina, “Surface morphology and plastic deformation of the ion-implanted TiNi alloy,” Physica: B, vol. 307, no. 1–4, pp. 251–257, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. L. L. Meisner, V. P. Sivokha, A. I. Lotkov, and E. G. Barmina, “Effect of ion implantation on shape memory characteristics of TiNi alloy,” Journal de Physique IV, vol. 112, pp. 663–666, 2003, Proceedings of the International Conference on Martensitic Transormations, (ICOMAT '020), Espoo, Finland, June, 2002. View at Publisher · View at Google Scholar
  31. L. Tan, R. A. Dodd, and W. C. Crone, “Corrosion and wear-corrosion behavior of NiTi modified by plasma source ion implantation,” Biomaterials, vol. 24, no. 22, pp. 3931–3939, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. A. I. Lotkov and A. A. Baturin, “Vacancy defects in metals, alloys, and intermetallic compounds with martensite transformations,” Materialovedenie, no. 7, pp. 39–44, 2000. View at Google Scholar
  33. F. V. Nolfi, Ed., Phase Transformations during Irradiation, Metallurgia, Chelyabinsk, Russia, Translated from English by M. E. Reznitsky, V. M. Ustintschikov, and A. B. Tsepelev, Edited by L.N. Bystrov, 1989.
  34. B. D. Ratner and A. S. Hoffman, “Physicochemical surface modification of materials used in medicine,” in Biomaterials Science: An Introduction to Materials in Medicine, B. D. Ratner, Ed., pp. 201–218, Elsevier, 2nd edition, 2004. View at Google Scholar
  35. K. Anselme, “Osteoblast adhesion on biomaterials,” Biomaterials, vol. 21, no. 7, pp. 667–681, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Eisenbarth, P. Linez, V. Biehl et al., “Cell orientation and cytoskeletion organization on ground titanium surfaces,” Biomolecular Engineering, no. 19, pp. 233–237, 2002. View at Google Scholar
  37. R. A. Pareta, A. B. Reising, T. Miller, D. Storey, and T. J. Webster, “An understanding of enhanced osteoblast adhesion on various nanostructured polymeric and metallic materials prepared by ionic plasma deposition,” Journal of Biomedical Materials Research: Part A, vol. 92, no. 3, pp. 1190–1201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Marleta, J. Uptonac, R. Langerbo, and J. P. Vacantica, “Transplantation of cells in matrices for tissue regeneration,” Advanced Drug Delivery Reviews, no. 3, pp. 165–182, 1998. View at Google Scholar
  39. D. C. Miller, K. M. Haberstroh, and T. J. Webster, “Mechanism(s) of increased vascular cell adhesion on nanostructured poly(lactic-co-glycolic acid) films,” Journal of Biomedical Materials Research: Part A, vol. 73, no. 4, pp. 476–484, 2005. View at Publisher · View at Google Scholar · View at Scopus