Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2016, Article ID 4950576, 5 pages
http://dx.doi.org/10.1155/2016/4950576
Research Article

An Analysis of the Thermal Conductivity of Composite Materials (CPC-30R/Charcoal from Sugarcane Bagasse) Using the Hot Insulated Plate Technique

1Division de Estudios de Posgrado e Investigación del Instituto Tecnológico de Zacatepec, Calzada Tecnológico No. 27, Col. Centro, 62780 Zacatepec, MOR, Mexico
2Division de Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Col. de lãs Campanas, 76010 Querétaro, QRO, Mexico
3Laboratorio de Investigación y Desarrollo de Materiales Avanzados, Facultad de Química, Universidad Autónoma del Estado de México, Km 12 Toluca-Atlacomulco, 50200 San Cayetano, MEX, Mexico

Received 11 September 2015; Revised 6 February 2016; Accepted 16 February 2016

Academic Editor: Fernando Lusquiños

Copyright © 2016 René Salgado-Delgado et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Wei and C. Meyer, “Degradation mechanisms of natural fiber in the matrix of cement composites,” Cement and Concrete Research, vol. 73, pp. 1–16, 2015. View at Publisher · View at Google Scholar · View at Scopus
  2. F. D. A. Silva, N. Chawla, and R. D. D. T. Filho, “Tensile behavior of high performance natural (sisal) fibers,” Composites Science and Technology, vol. 68, no. 15-16, pp. 3438–3443, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Salas, R. Luco, and R. Ojeda, “Análisis Estructural de un Camarán de materiales compuestos,” Anales de Mecánica de la Fractura, vol. 20, 2003. View at Google Scholar
  4. C. S. Smith, Design of Marine Structures in Composite Materials, Elsevier Science, Amsterdam, The Netherlands, 1990.
  5. Marcos De Paula Oliveira et al., “La caña de azúcar bagazo ash como material parcial- portland-cemento-reemplazo,” Dyna, Revista de la Facultad de Minas, vol. 77, no. 163, pp. 47–54, 2010. View at Google Scholar
  6. N. Martínez-Mateos, D. Busquets-Mataix, M. D. Salvador-Moya, and V. Amigó-Borrás, “Propiedades mecánicas de compuestos de matriz de aluminio reforzados con partículas cerámicas, obtenidos por extrusión de polvos,” in Proceedings of the VIII Congreso Nacional de Propiedades Mecánicas de Sólidos, pp. 215–224, 2002.
  7. G. Bao, J. W. Hutchinson, and R. M. McMeeking, “Particle reinforcement of ductile matrices against plastic flow and creep,” Acta Metallurgica et Materialia, vol. 39, no. 8, pp. 1871–1882, 1991. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Peña-Rodríguez, J. Sánchez-Molina, and R. Monroy, “Efecto de la concentración de poliestireno expandido en la conductividad térmica efectiva de bloques de termoarcilla,” Revista Colombiana de Física, vol. 40, no. 2, pp. 285–288, 2008. View at Google Scholar
  9. M. M. Pérez-Sánchez, R. Centeno-Lara, and F. Lazcano-Serrano, “Desarrollo de un prototipo para la caracterización térmica de los materiales de construcción regionales,” Ingeniería, vol. 6, no. 2, pp. 13–22, 2002. View at Google Scholar
  10. ASTM C 177-97 (Standard Test Method for Steady State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded Hot plate Apparatus).