Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2014 (2014), Article ID 621789, 8 pages
http://dx.doi.org/10.1155/2014/621789
Research Article

Void Shapes Controlled by Using Interruption-Free Epitaxial Lateral Overgrowth of GaN Films on Patterned SiO2 AlN/Sapphire Template

Institute of Lighting and Energy Photonics, National Chiao Tung University, Tainan 71150, Taiwan

Received 20 February 2014; Revised 26 April 2014; Accepted 2 June 2014; Published 18 June 2014

Academic Editor: Nelson Tansu

Copyright © 2014 Yu-An Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

GaN epitaxial layers with embedded air voids grown on patterned SiO2 AlN/sapphire templates were proposed. Using interruption-free epitaxial lateral overgrowth technology, we realized uninterrupted growth and controlled the shape of embedded air voids. These layers showed improved crystal quality using X-ray diffraction and measurement of etching pits density. Compared with conventional undoped-GaN film, the full width at half-maximum of the GaN (002) and (102) peaks decreased from 485 arcsec to 376 arcsec and from 600 arcsec to 322 arcsec, respectively. Transmission electron microscopy results showed that the coalesced GaN growth led to bending threading dislocation. We also proposed a growth model based on results of scanning electron microscopy.

1. Introduction

III-V compound semiconductors of AlN, GaN, and InN are suitable materials for light-emitting diodes (LEDs) because of their wurtzite crystal structures and direct band gap characteristics [1]. LEDs used for backlighting sources of liquid crystal displays demand solid-state lighting technology [2]. However, large lattice mismatches between substrates and epitaxial layers lead to the formation of threading dislocations (TDs), which decrease the lifetime of diodes and deteriorate the quality of crystals [3]. Epitaxial films with high crystal qualities are necessary for next-generation applications. Hence, reducing the TD density of epitaxial films is a primary challenge.

Recent studies have proposed several useful growth techniques to improve the crystal quality, such as epitaxial lateral overgrowth (ELOG) [46], pendeo-epitaxy (PE) [7], maskless PE [8], cantilever epitaxy [9], facet-controlled epitaxial lateral overgrowth (FACELO) [10, 11], SiNx/GaN buffer layer [12], abbreviated growth mode [1315], and freestanding GaN substrates [1618]. Patterned sapphire substrate [19] and embedded air voids method [20, 21] have been developed to further enhance the light extraction efficiency (LEE) of light-emitting diodes (LEDs). However, embedded air voids method has been widely used. Several kinds of lateral overgrowth techniques have been reported to create air voids, such as using nanocolumns [22], nanorod [23], PE, or ELOG technique [24]. Ali et al. also showed that void shapes can be controlled using different hexagonally patterned maskless GaN templates. The TDs near the voids were bent differently with the various hexagonally patterned maskless GaN templates [25, 26]. Martinez-Criado et al. used the ELOG technique to embed air voids into GaN substrate and recommended the stress relaxation and crack suppression [16]. Dai et al. reported the higher light escaping probability with the chemical etched embedded rhombus-like air voids in light-emitting structures [27]. In addition, embedded air voids play a key role in freestanding GaN substrate fabrication. Lin et al. employed the GaN films grown on patterned sapphire substrate with large voids on the top region in the chemical lift-off process and found that the embedded voids can accelerate the wet etching process [17]. Bohyama et al. acquired spontaneously separated freestanding GaN substrate by concentrating the compressive stress at the seeds because of the intentional formation of voids [18]. Nevertheless, the above-mentioned techniques inevitably suffer from growth interruption and complicated procedures. In ELOG technique, a 2 μm-thick GaN epitaxial layer is deposited on the substrate, followed by photolithography with dry etching and photoresist techniques to obtain the templates [46]. To satisfy the next-generation application, a high efficiency with a low-cost fabrication method is required. Recently, Lai et  al. reported an ex situ AlN buffer layer deposited by sputter, which yielded an interruption-free GaN epitaxy [28]. To further improve the light extraction efficiency, Sheu et al. implanted Ar into a sputtered AlN nucleation layer, and their results showed that the GaN-based epitaxial layer grown on implanted regions has lower growth rates than the implantation-free regions, which eventually form the embedded air voids [2931].

In this study, we introduced the interruption-free epitaxial lateral overgrowth (IFELOG) technology, a relatively efficient technique developed to simplify template fabrication while keeping the advantages of ELOG. This technology can also control void shapes using a patterned SiO2 AlN/sapphire template and obtain an uninterrupted growth in metal-organic chemical vapor deposition (MOCVD).

2. Experimental Procedure

GaN films used in this study were all prepared by Thomas Swan MOCVD. A 25 nm thick AlN buffer layer was initially deposited on a c-plane sapphire substrate by sputter. The AlN plates on the separated sputtering guns were used as the sputtering targets for AlN buffer layer deposition. An 80 nm-thick SiO2 film was deposited on the AlN surface by plasma-enhanced chemical vapor deposition. The sample was subsequently patterned by photolithography with photoresist and dry etching processes to form patterned SiO2 microdisks. High-density plasma was used for SiO2 etching. Figure 1(a) shows the specification of the patterned SiO2 AlN/sapphire template. The pitch and the diameter of the patterned SiO2 microdisk were 3.4 and 2 μm. Figure 1(b) shows the tilted view of the scanning electron microscope (SEM) image of the patterned SiO2 AlN/sapphire template.

fig1
Figure 1: (a) Cross-sectional structure of patterned SiO2 AlN/sapphire template. (b) Tilted SEM image of patterned SiO2 AlN/sapphire template.

In this study we controlled void shapes by IFELOG comprising three growth steps, with each step having a specific function. The first step (Step 1) involved the initial formation of GaN seeds exposed on PVD AlN buffer layer. The second step (Step 2) involved the growth performed only against the c-plane growth, and the final step (Step 3) involved the coalescence. Trimethylgallium (TMGa) and ammonia (NH3) were, respectively, used as gallium and nitrogen sources during growth. The GaN epitaxial layer grown on a patterned SiO2 AlN/sapphire template with rectangular, triangular, and pillar voids was labeled as sample-R, sample-T, and sample-P, respectively.

At the onset of GaN growth, the growth temperature and chamber pressure in Step 1 were set at 1050°C and 400 torr. The growth times of sample-R, sample-T, and sample-P in the same step were 1500, 750, and 1500 s, respectively. The growth temperature and chamber pressure in Step 2 were 1050°C and 100 torr. Pulsed growth technique was applied to obtain c-plane growth in this step, which is generally used to grow GaN nanorod arrays [32]. Hence, this technique enhances the c-plane growth direction. The respective pulsed growth periods of sample-R, sample-T, and sample-P were 60, 60, and 360, respectively. The flow rates of TMGa and NH3 were 17 sccm and 3.5 slm; the injection times of TMGa and NH3 were 3 and 5 s. Following the pulsed growth, Step 3 was performed with growth temperature and chamber pressure set at 1080°C and 400 torr. Conventional undoped-GaN with neither IFELOG technology nor patterned SiO2 AlN/sapphire template was prepared (i.e., sample-C) for comparative purposes.

The samples were examined by optical microscopy (OM), SEM, X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM) to discuss the distribution of IFELOG in detail.

3. Results and Discussion

Figure 2 shows the cross-sectional SEM images of GaN epitaxial layers with differently shaped air voids utilizing IFELOG on the same template. Figure 2(a) shows the cross-sectional SEM images of sample-R with embedded rectangular air voids, each having a width and height of 1.00 and 0.10 μm. Figure 2(b) shows the cross-sectional SEM images of sample-T with embedded triangular air voids, each having a width and height of 0.60 and 0.50 μm; the angle of inclination of the voids was 54°. Figure 2(c) shows the cross-sectional SEM images of sample-P with embedded pillar-shaped air voids, each having a width and height of 0.55 and 1.12 μm.

fig2
Figure 2: Cross-sectional SEM images of (a) sample-R, (b) sample-T, and (c) sample-P.

Figure 3(a) shows the growth model of the GaN epitaxial layer with various air voids. At the onset of IFELOG, we obtained different distances between GaN seeds by adjusting the growth time in Step 1 (Figures 3(a-2) and 3(b-2)). We also controlled the void heights by changing the pulsed growth periods in Step 2 (Figures 3(a-3) and 3(c-3)). Figure 4 shows the tilted and cross-sectional SEM images of the GaN epitaxial layers of sample-R after Step-2 growth in the IFELOG technology. The standing GaN seeds confirmed that this technique induced c-plane growth. We also found that the GaN seeds were not able to deposit the entire AlN area during Step-1 growth, which will be discussed in more detail in Figure 7. Considering that the samples had different growth time combinations in between steps, we obtained the various diameters and heights of GaN seeds. Ali etal. reported that the diameter of hexagonal holes between GaN affects void shape control [25]. In other words, the distances between GaN seeds define the void shape after coalescence. Figures 3(a-4), 3(b-4), and 3(c-4) show the coalesced growth in Step-3 growth. Narrowing the gap inhibits the source gas molecules from diffusing to the bottom, which eventually forms the embedded air voids that are responsible for the formation of differently shaped air voids (i.e., sample-R, sample-T, and sample-P) [33].

621789.fig.003
Figure 3: The proposed growth model of (a) sample-R, (b) sample-T, and (c) sample-P.
fig4
Figure 4: (a) Tilted and (b) cross-sectional SEM images of the sample-R GaN epitaxial layers after Step-1 and Step-2 growth in the IFELOG technology.

The crystal quality of the GaN epitaxial layer was investigated by XRD and AFM. Heying et al. reported the pure edge TD to be insensitive to the symmetric (00l) rocking curves with nonzero and to distort only the () planes with either or nonzero. In other words, the decrease in the FWHM values is regarded as a reduction in TDs [3436]. Table 1 shows the respective values of full width at half maximum (FWHM) of the GaN (002) peak, GaN (004) peak, GaN (006) peak, GaN (102) peak, and GaN (105) peak for sample-C, sample-R, sample-T, and sample-P, respectively. All of the XRD results showed an improvement in IFELOG, particularly for sample-R, which reduced the GaN (102) from 600 arcsec to 322 arcsec. XRD data showed that IFELOG significantly enhanced the crystal quality due to the lateral growth beside the embedded air voids. The bending dislocations were observed in the TEM images.

tab1
Table 1: Full width at half-maximum values of rocking curves measured by XRD.

A wet etching experiment was conducted in H3PO4 solution at 250°C to determine the etching pit densities (EPDs) for GaN samples, and the samples were then examined using AFM. After wet etching, numerous hexagonal etching pits were observed on the surface. These etching pits were produced by the threading dislocations propagating to the surface of GaN, which originate from the interface between GaN and substrate. Figure 5 shows the EPD images over a 5 × 5 μm2 scanning area of sample-C, sample-R, sample-T, and sample-P. The EPDs of sample-C, sample-R, sample-T, and sample-P were 5.3 × 108, 2.4 × 108, 2.7 × 108, and 2.2 × 108/cm2, respectively. These results indicated that the dislocation densities could be reduced in GaN epilayer using IFELOG technology, which also corresponded to the XRD result.

fig5
Figure 5: The EPD images over 5 × 5 μm2 scanning area of (a) sample-C, (b) sample-R, (c) sample-T, and (d) sample-P.

TEM was used to analyze the reduction in the dislocation density. Figure 6 shows the TEM images of the GaN epitaxial layer overgrown on the patterned SiO2 AlN/sapphire template. The bended TDs were led by the coalesced growth beside the voids [26], which eventually developed into stacking faults (inset of Figure 6(c). Recent studies have reported that TDs can be blocked by SiO2 and stacking faults mentioned above [37, 38]. Based on the TEM images, the decrease in FWHM of the GaN peak and EPDs was caused by the significant decrease in TDs of the GaN epitaxial layer through IFELOG.

fig6
Figure 6: The TEM images of (a) sample-R, (b) sample-T, and (c) sample-P.
fig7
Figure 7: The OM images of (a) sample-R, (b) sample-T, and (c) sample-P.

Figures 7(a), 7(b), and 7(c) show the OM images of sample-R, sample-T, and sample-P, respectively. The OM images show that the patterned SiO2 microdisk was surrounded by expanded voids. Among all the samples, sample-R and sample-T had the most and least numbers of expanded voids. Lift-off template surface and cross-section SEM measurements were performed to further clarify the cause of the expanded voids that surrounded the patterned SiO2 microdisk. Sample-R was lifted off by a diamond cutter and it was found that the expanded voids surrounded the patterned SiO2 microdisk (Figure 8(a)). Figure 8(b) shows the cross-sectional SEM images prepared to clearly observe the interface between SiO2 and the GaN epitaxial layer. The formation of expanded voids was caused by the discontinuous island-type growth characteristic of the GaN seed layer in the beginning. In other words, GaN seeds were not able to deposit the entire AlN area during Step-1 growth, which resulted in residual vacancies beside the patterned SiO2 microdisk. These vacancies were converted into expanded voids, which had the similar function with the voids generated from the nanorod template [23]. Such behavior can increase the lateral growth and lower the TDs. These expanded voids were suggested to have positive effects on the quality of the GaN epitaxial layer because of the enhancement in XRD data and EPD result of sample-R, which had the most number of expanded voids.

fig8
Figure 8: (a) The SEM image of sample-R lifted off by diamond cutter. (b) The cross-sectional SEM image of sample-R.

4. Conclusion

We successfully demonstrated an interruption-free epitaxial lateral overgrowth technology by combining sputter AlN buffer layer and pulsed growth method. By adjusting Step-1 growth time and the periods of Step-2 growth, we easily controlled the void shape by the same template. The growth model was proposed to explain the formation of differently shaped air voids based on the SEM results. AFM images show that the epitaxial layer grown by IFELOG technology has lower etching pit densities, thereby increasing the volume of defect-free regions and bending TDs. XRD data suggests that we can decrease the FWHM of the GaN (002) and (102) peaks from 485 arcsec to 376 arcsec and from 600 arcsec to 322 arcsec in sample-R. IFELOG technology not only simplified the fabrication of templates, but also greatly enhanced the quality of the GaN epitaxial layer and yielded an uninterrupted growth.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The authors would like to acknowledge the financial support from National Science Council of Taiwan for their research Grants of NSC 101-2221-E-009-028-MY3 and NSC-3113-P-009-007-CC2.

References

  1. T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 38, no. 7, pp. 3976–3981, 1999. View at Google Scholar · View at Scopus
  2. Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazaki, and T. Mukai, “Phosphor-conversion white light emitting diode using InGaN near-ultraviolet chip,” Japanese Journal of Applied Physics, Part 2: Letters, vol. 41, no. 4, pp. L371–L373, 2002. View at Google Scholar · View at Scopus
  3. Y. P. Hsu, S. J. Chang, Y. K. Su et al., “Lateral epitaxial patterned sapphire InGaN/GaN MQW LEDs,” Journal of Crystal Growth, vol. 261, no. 4, pp. 466–470, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Kapolnek, S. Keller, R. Vetury et al., “Anisotropic epitaxial lateral growth in GaN selective area epitaxy,” Applied Physics Letters, vol. 71, no. 9, pp. 1204–1206, 1997. View at Google Scholar · View at Scopus
  5. T. S. Zheleva, O.-H. Nam, M. D. Bremser, and R. F. Davis, “Dislocation density reduction via lateral epitaxy in selectively grown GaN structures,” Applied Physics Letters, vol. 71, no. 17, pp. 2472–2474, 1997. View at Google Scholar · View at Scopus
  6. M. Hansen, P. Fini, M. Craven, B. Heying, J. S. Speck, and S. P. DenBaars, “Morphological and optical properties of InGaN laser diodes on laterally overgrown GaN,” Journal of Crystal Growth, vol. 234, no. 4, pp. 623–630, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. I.-H. Kim, C. Sone, O.-H. Nam, Y.-J. Park, and T. Kim, “Crystal tilting in GaN grown by pendoepitaxy method on sapphire substrate,” Applied Physics Letters, vol. 75, no. 26, pp. 4109–4111, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. A. M. Roskowski, E. A. Preble, S. Einfeldt, P. M. Miraglia, and R. F. Davis, “Investigations regarding the maskless Pendeo-epitaxial growth of GaN films prior to coalescence,” IEEE Journal of Quantum Electronics, vol. 38, no. 8, pp. 1006–1016, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. C. I. H. Ashby, C. C. Mitchell, J. Han et al., “Low-dislocation-density GaN from a single growth on a textured substrate,” Applied Physics Letters, vol. 77, no. 20, pp. 3233–3235, 2000. View at Google Scholar · View at Scopus
  10. H. Miyake, R. Takeuchi, K. Hiramatsu et al., “High quality GaN grown by facet-controlled ELO, (FACELO) technique,” Physica Status Solidi (A), vol. 194, pp. 545–549, 2002. View at Google Scholar
  11. K. Hiramatsu, K. Nishiyama, M. Onishi et al., “Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO),” Journal of Crystal Growth, vol. 221, no. 1–4, pp. 316–326, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. Y.-B. Lee, T. Wang, Y.-H. Liu et al., “High-performance 348 nm AlGaN/GaN-based ultraviolet-light-emitting diode with a SiN buffer layer,” Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 41, no. 7, pp. 4450–4453, 2002. View at Google Scholar · View at Scopus
  13. Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 15, no. 4, pp. 1066–1072, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. Y.-K. Ee, X.-H. Li, J. Biser et al., “Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire,” Journal of Crystal Growth, vol. 312, no. 8, pp. 1311–1315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Cao, J. M. Biser, Y.-K. Ee et al., “Dislocation structure of GaN films grown on planar and nano-patterned sapphire,” Journal of Applied Physics, vol. 110, no. 5, Article ID 053505, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Martinez-Criado, M. Kuball, M. Benyoucef et al., “Free-standing GaN grown on epitaxial lateral overgrown GaN substrates,” Journal of Crystal Growth, vol. 255, no. 3-4, pp. 277–281, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. C.-F. Lin, J.-J. Dai, M.-S. Lin et al., “An AlN sacrificial buffer layer inserted into the GaN/patterned sapphire substrate for a chemical lift-off process,” Applied Physics Express, vol. 3, no. 3, Article ID 031001, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Bohyama, H. Miyake, K. Hiramatsu, Y. Tsuchida, and T. Maeda, “Freestanding GaN substrate by advanced facet-controlled epitaxial lateral overgrowth technique with masking side facets,” Japanese Journal of Applied Physics, Part 2: Letters, vol. 44, no. 1–7, pp. L24–L26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. W.-K. Wang, D.-S. Wuu, W.-C. Shih et al., “Near-ultraviolet InGaN/GaN light-emitting diodes grown on patterned sapphire substrates,” Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 44, no. 4, pp. 2512–2515, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. W.-C. Lai, Y.-Y. Yang, L.-C. Peng, S.-W. Yang, Y.-R. Lin, and J.-K. Sheu, “GaN-based light emitting diodes with embedded SiO2 pillars and air gap array structures,” Applied Physics Letters, vol. 97, no. 8, Article ID 081103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Ali, O. Svensk, L. Riuttanen et al., “Enhancement of near-UV GaN LED light extraction efficiency by GaN/sapphire template patterning,” Semiconductor Science and Technology, vol. 27, no. 8, Article ID 082002, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. S. D. Hersee, X. Y. Sun, X. Wang, M. N. Fairchild, J. Liang, and J. Xu, “Nanoheteroepitaxial growth of GaN on Si nanopillar arrays,” Journal of Applied Physics, vol. 97, no. 12, Article ID 124308, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. C. H. Kuo, Y. A. Chen, J. P. Wu, and L. C. Chang, “Efficiency improvement of near-ultraviolet nitride-based light-emitting-diode prepared on GaN nano-rod arrays by metalorganic chemical vapor deposition,” IEEE Journal of Quantum Electronics, vol. 50, no. 3, article 129, 2014. View at Google Scholar
  24. Z. Liliental-Weber, X. Ni, and H. Morkoc, “Structural perfection of laterally overgrown GaN layers grown in polar- and non-polar directions,” Journal of Materials Science: Materials in Electronics, vol. 19, no. 8-9, pp. 815–820, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Ali, A. E. Romanov, S. Suihkonen et al., “Void shape control in GaN re-grown on hexagonally patterned mask-less GaN,” Journal of Crystal Growth, vol. 315, no. 1, pp. 188–191, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Ali, A. E. Romanov, S. Suihkonen et al., “Analysis of threading dislocations in void shape controlled GaN re-grown on hexagonally patterned mask-less GaN,” Journal of Crystal Growth, vol. 344, no. 1, pp. 59–64, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. J.-J. Dai, C.-F. Lin, G.-M. Wang, and M.-S. Lin, “Enhanced the light extraction efficiency of an InGaN light emitting diodes with an embedded rhombus-like air-void structure,” Applied Physics Express, vol. 3, no. 7, Article ID 071002, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. C.-H. Yen, W.-C. Lai, Y.-Y. Yang et al., “GaN-based light-emitting diode with sputtered AlN nucleation layer,” IEEE Photonics Technology Letters, vol. 24, no. 4, pp. 294–296, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. H. Yeh, J. K. Sheu et al., “InGaN flip-chip light emitting diodes with embedded air voids as light-scattering layer,” IEEE Electron Device Letters, vol. 34, no. 12, pp. 1542–1544, 2013. View at Google Scholar
  30. J.-K. Sheu, Y.-H. Yeh, S.-J. Tu, M.-L. Lee, P. C. Chen, and W.-C. Lai, “Improved output power of GaN-based blue LEDs by forming air voids on Ar-implanted sapphire substrate,” Journal of Lightwave Technology, vol. 31, no. 8, Article ID 6464504, pp. 1318–1322, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. J.-K. Sheu, S.-J. Tu, Y.-H. Yeh, M.-L. Lee, and W.-C. Lai, “Gallium nitride-based light-emitting diodes with embedded air voids grown on Ar-implanted AlN/sapphire substrate,” Applied Physics Letters, vol. 101, no. 15, Article ID 151103, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Letters, vol. 6, no. 8, pp. 1808–1811, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. H. J. Oh, S. W. Rhee, and I. S. Kang, “Simulation of CVD process by boundary integral technique,” Journal of the Electrochemical Society, vol. 139, no. 6, pp. 1714–1720, 1992. View at Google Scholar · View at Scopus
  34. H. Heinke, V. Kirchner, S. Einfeldt, and D. Hommel, “X-ray diffraction analysis of the defect structure in epitaxial GaN,” Applied Physics Letters, vol. 77, no. 14, pp. 2145–2147, 2000. View at Google Scholar · View at Scopus
  35. Y. Iyechika, M. Shimizu, T. Maeda, H. Miyake, and K. Hiramatsu, “X-ray analysis of twist and tilt of GaN prepared by facet-controlled epitaxial lateral overgrowth (FACELO),” Japanese Journal of Applied Physics, Part 2: Letters, vol. 42, no. 7, pp. L732–L734, 2003. View at Google Scholar · View at Scopus
  36. B. Heying, X. H. Wu, S. Keller et al., “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Applied Physics Letters, vol. 68, article 643, 1995. View at Publisher · View at Google Scholar · View at Scopus
  37. C. H. Chiu, H. H. Yen, C. L. Chao et al., “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Applied Physics Letters, vol. 93, no. 8, Article ID 081108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. D. S. Wuu, W. K. Wang, K. S. Wen et al., “Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes,” Journal of the Electrochemical Society, vol. 153, no. 8, Article ID 063608JES, pp. G765–G770, 2006. View at Publisher · View at Google Scholar · View at Scopus