Construction delays are considered a common worldwide problem. Previous studies have investigated construction delay factors from the perspectives of different project stakeholders. However, a thorough analysis of such delays on different types of construction projects in different geographies is still lacking, precisely the effect of employers’ delays in traditional and building information modeling (BIM)-enabled projects. This research proposes a research framework to address potential employer-caused delay factors in traditional and BIM-enabled projects. A cross-sectional literature search was carried out to review construction delay factors and employer-caused delay factors in traditional and BIM-enabled projects. The study found that: (a) a research gap exists in traditional construction delay studies in specific continents and project types as well as in BIM-enabled project studies, (b) delay aspects have not been addressed or have been partially addressed in previous studies, and (c) a relationship model between employer-caused delay factors and success factors can be developed by studying the effects of BIM barriers and implementation strategies. This paper is the first to present a comprehensive review on delay factors and tender a novel framework to address employer-caused delay factors in both traditional and BIM-enabled projects.

1. Introduction

Construction delay is a significant problem for the construction industry. Hence, construction delay factors and their causes have received considerable attention from both academia and industry. A delayed project is defined as a project doest not adhere to its planned timetable [1]. Delays occur in most construction projects, and the length of the delay varies for each project, ranging from a few days to several years. Shebob et al. [1] support this attestation, stating that projects are rarely completed within the specified time.

Many previous studies have reviewed construction delays in different contexts and countries around the globe. For example, Abinayasri et al. [2] conducted a survey in India’s Erode district on delay factors in the construction industry. Orangi et al. [3] proposed a framework to address construction delays in pipeline projects and similar infrastructure projects in Victoria, Australia. Mahamid [4] attempted to identify a risk matrix for factors causing construction delays in Palestinian road projects from the employer’s perspective. Khair et al. [5] studied construction delays in Sudanese road projects and proposed a management framework to address and reduce the delays.

The employer can be defined as the entity that enters into a contract with a contractor to carry out specific construction tasks or projects. The employer commonly appoints a representative for the running of the project. The employer is always responsible for making payments to the contractor, provided the work is finished on or before the completion time. In this research, the reference to the employer, employer’s personnel, employer’s corporation, and employer’s representative all shall mean the same. The most common factors for the employer’s delays include lack of previous experience, delay in delivering the site to the contractor, delay in giving the order to commence or cease work, and delay in the approval of schedules.

Despite the growing importance of addressing construction delay while taking all associated aspects into account, it is still considered that construction delay aspects, employer-caused delay factors, and delay characteristics have been discussed previously without carrying out an in-depth review that can help in filling the research gaps in previous studies. The research gaps are as follows: very few or no studies have been conducted on some type of projects, sufficient construction delay studies have not been conducted in some continents, and an appropriate framework is not available to completely address construction delay. Building information modeling (BIM) is an essential aspect that the employer always initiates. In most cases, BIM helps the employer address construction delays such as those arising from the order and design changes. However, BIM implementation barriers should also be considered to study their influence on the success factors for addressing employer-caused delay factors in BIM-enabled projects.

2. Literature Review

2.1. Employer-Caused Delays in Construction Projects

A delay in completing a project can have adverse consequences on the project performance and all parties involved in the project. Contractors may be subjected to undesirable bank interests on borrowed investment money because the contractor’s payments may be held up owing to project delays [6].

Delays can be classified according to the delayed source, that is, the party that causes the delay. Some delays are caused by the employer and are hence called employer-caused delays. Other delays are caused by both the employer and the contractor simultaneously. The employer and the contractor are, many times, responsible for concurrent delays. The concurrent delays might happen when the contractor and employer delays occur simultaneously on the critical path of delay with a separate but parallel chain of activities [7]. In other cases, the employer and contractor delays might not coincide; such employer delays might be classified under excusable delays by the contractor or delays caused by the employer that implement entitlement for the contractor’s prolongation cost [8].

Moreover, delays may not be caused by either of them, and this results in what is called third-party delays, such as those caused by coercive forces or wars [9]. The current paper concentrates on the causes of delays associated with the employer. The reasons for employer-caused delays in construction projects vary because each study would have had a specific perception and a particular classification procedure for identifying these reasons following the study’s nature. Employer-caused delays may be directly attributed to the employer or attributed to another party representing the employer, such as the employer’s agents [9] (e.g., the consulting engineer).

Compensable delays are one of the delays that the employer mainly causes. These delays are caused by the employer directly, through one of its agents or its representative in the construction project. These delays may also result from an error caused by the employer or any negligence by the employer, leading to a delay in the end time agreed upon in the contract. When a compensable delay occurs, the contractor can request for an extension of time or monetary compensation for damages occurring because of the delay. Ibironke et al. [10] found that one of the reasons that may lead to the occurrence of compensable delays is the changes that are made by the employer through the implementation of different working conditions or the suspension of work. Tumi et al. [11] clarified that these reasons also include delay in reviewing and approving design documents, poor communication and coordination between project parties, slowness of the employer in making important decisions, and employer-caused delay in payments due to financial difficulties. In some cases, the documents that the employer provides to the contractor may be incomplete, incorrect, or contain anomalies that will affect the course of work [12].

Tahera and Pandey [13] inferred that the employer’s organizational problems are considered fundamental reasons for delaying construction projects. These problems are mainly associated with late payment and lack of planning experience. Samarah and Bekr [14] found that continuous design changes are a significant factor causing Jordan’s project delays. They added that design errors also contribute to the delay in the implementation of projects. Hasan et al. [15] emphasized that employer-caused delays in approving timetables, continuous interference in the contractor’s work, and changes in construction requirements are fundamental reasons for the delayed completion of projects. They clarified that the employer might make adjustments and changes to the work during implementation, which will impact the contractor in terms of financial compensation or the time required for project completion. Agu and Ibe [16] found that employer-caused delay in adopting design documents, delay in revising design documents, and changes in orders are essential factors that extend the period required to complete a Nigerian project. Aziz [17] and Ezeldin and Abdel-Ghany [18] agreed that delay in the approval of design documents also contributes to project delay because work can start only when the documents are received. Marzouk and Abdelaty [19], Haq et al. [20], and Abdellatif and Alshibani [21] found that a weakness in the employer’s ability to make decisions affects the progress of the project.

Based on the above discussion, it is well understood that the employer plays a critical role in decision-making on project delays and the appropriate extension of the time required to complete the project. Thus, this study focuses on reviewing employer-caused delay factors and establishing a research framework to address the delay caused by the employer in BIM-enabled projects.

2.2. Potential Employer-Caused Delays in BIM-Enabled Projects

BIM is an essential technology-based process where digital data models are utilized in a virtual space to facilitate the high-quality management of different aspects of construction projects, including delays. Nowadays, construction delay management throughout the life cycle of a project is positively influenced by BIM technology. However, the risk of delay in BIM-enabled projects is still substantial. For instance, Chien et al. [22] studied the critical risk factors for BIM-enabled projects. They clarified that the risks of implementing BIM successfully at a project site could be categorized as technical, management, environmental, financial, and legal. Besides, inadequate project experience, lack of software compatibility, and model management difficulties are the top three risk factors that influence BIM projects’ proper implementation. Thus, it can be concluded that although BIM technology helps to reduce construction delay, the risks of successfully implementing BIM should be carefully considered during the project life cycle to ensure successful BIM implementation.

Ho et al. [23] proposed using BIM technology to share construction information; they presented on how to use BIM in construction knowledge-sharing management. Accordingly, they proposed a BIM knowledge management system for the engineers and project managers. Moreover, Ganbat et al. [24] have mapped the relationship between International Construction Projects (ICPs) risks and BIM to improve using BIM in the construction industry. The outcome of their paper showed that BIM could help to improve communication management and mitigate risks by removing the language barriers among the project’s stakeholders. Azhar et al. [25] stated that despite the advantages of implementing BIM in construction projects and the rapid growth of BIM adoption, several developing countries face various challenges and obstacles that hinder BIM implementation making it a lengthy task. BIM barriers can be perceived differently depending on two different viewpoints: BIM users and nonusers [26]. Elhendawi et al. [27] identified 38 BIM barriers, classified under six groups: “Personal,” “BIM processes,” “Business,” “Technical,” “Organization,” and “Market.” Among these barriers, the following are directly related to delay due to problems in BIM implementation: legal and contractual challenges, time and cost to train new users, cost implications at the outset of BIM implementation, unclear benefits, uncertainty regarding return on investment, lack of contractual arrangements, lack of BIM specialists, difficulties in managing the transition from existing systems to BIM, and drastic changes in the organizational chart and workflow due to recent BIM implementation. Ya’acob et al. [28] classified BIM implementation risks under four categories: “Technology,” “Management,” “Financial,” and “Legal.” The main barriers that may increase employer-caused delay are the lack of BIM skilled personnel or expertise, the lack of funds, cost challenges, high initial investment costs, unclear levels of responsibility, and risks involving dispute-settlement mechanisms.

In summary, although it has been confirmed that BIM implementation ultimately benefits construction projects, there are still many risks and barriers related to many project parties that can weaken the advantages gained from BIM implementation at construction, including the advantages of delay control. Moreover, because the employer plays a leading role in BIM implementation, it is essential to thoroughly study the employer-caused delays in construction projects and the effects of BIM barriers on these delays.

The relationship between the employer and the BIM implementation has been deliberated in many previous kinds of literature. For instance, Dakhil et al. [29] illustrated that employers are an essential entity to promote using BIM in construction projects. However, they mentioned that BIM’s implementation and execution are commonly avoided from being more extensively accepted throughout the construction market by the employers’ worries and concerns and the absence of a complete understanding of the advantages of BIM. Thus, they suggested that the employer organization establish the required competencies and administrative staff to support the BIM execution. According to a Smart Market Report study in 2011, customers can play an essential function in the BIM execution procedure; that is, employers’ need can incentivize the market to begin carrying out BIM [30]. However, the employer’s worries and concerns and a lack of complete understanding of BIM advantages have barred adopting BIM in many projects [29].

3. Review Approach

This paper presents the outcome of a holistic review of construction project delays with particular emphasis on employer-caused delay factors. Moreover, it proposes establishing a relationship between employer-delay factors and their relevant BIM implementation strategy factors and BIM barriers to the employer-caused delay factors. A systematic research methodology is adopted, consisting of a five-step approach to developing the proposed research framework model. Figure 1 summarizes the steps used in this research to establish a research framework to address employer-caused delay factors. In this figure, the following principal research aspects are presented briefly: countries and project types used to identify research gaps, population and sample sizes used in previous studies, critical features used for previous mapping papers, employer-caused delay factors, and the proposed delay aspects.

In the first step, a population range in selected database engines is determined by conducting a comprehensive search for construction delay research papers. A representing number of target research papers for each continent is identified based on the paper’s year and the representing sample size suggested by Hogg et al. [31]. The databases selected for the search are Google Scholar, Scopus, and Web of Science (WOS); duplicate data are visually excluded. Khoshnava et al. [32] conducted a scientific comparison of the WOS and Scopus. They found that the WOS provides reliable coverage of many previous studies dating as far back as 1990; in contrast, Scopus covers many papers but is limited to recent ones.

The continents included in the search are Asia, Africa, Oceania, Europe, North/Central America, and South America, all of which have countries with significant construction projects. The search engine keywords are carefully selected to ensure the maximum coverage of construction delay research papers; the main keywords used are “Construction,” “Employer,” “Client,” “Owner,” “Delay,” “Factor,” “Element,” “Cause,” “Reason.” The full description of the keywords is shown in Figure 2. The collected data are further refined to ensure their relevance to the study subject and to ensure that no reviews are repeated. The refinement is carried out at the end of every search. A minimum of five separate searches is conducted in Scopus. Data refinement is carried out for relevance, repetition, and further exploration. However, it is essential to note that the researchers have checked visually, in every search iteration, the research papers’ list considering the main keywords’ synonyms, the country, and the study’s continent.

The strategy used in searching for the research papers related to the subject is as follows to ensure that comprehensiveness is achieved for this review: firstly, the combination of the main search words has been interchanged into five arrangements during the search in the main engines; secondly, for every iteration of search (in the five combinations of the main words), the researcher checked the list of research papers that is related to the subject visually to ensure comprehensiveness. However, it should be noted that the search is limited only to research papers (no theses or reports are included) between 2007 and 2021.

Besides, a similar systematic search is conducted using BIM as the subject in the field of construction. The population range in the same selected database engines is determined. The search engine keywords are carefully chosen to ensure the maximum coverage of the concerned subject; the main keywords used are “Construction,” “Delay,” “Factor,” “Element,” “Employer,” “Owner,” “Client,” “Causes,” “Reason,” “Building Information Modeling,” and “BIM.”

4. Data Analysis

Tables 1 and 2 summarize the data collected for each continent in terms of the research papers related to construction delay and BIM construction delay.

Based on Hogg et al. [30], a sufficient representing sample was required to review and identify the targeted research gaps. Table 3 presents the target size calculated for each continent for the number of research papers considered to sufficiently represent the total number of comprehensive research papers related to construction delay and BIM-related construction delay.

In the second step, a preliminary mapping was conducted for 38 research papers related to BIM construction delays. Table 4 indicates that the target research papers related to BIM address the employer-caused delay factors from a limited viewpoint. For instance, Khoshnava et al. [32] studied BIM’s potential application in construction disputes and conflicts. They addressed the factors of the employer’s failure to respond on time, discrepancies in contract documents, and reluctance to check for constructability. Marzouk and Abdelaty [19] addressed employer-caused delay factors on the delay in interim payments, variations in orders, and the employer’s lack of construction experience.

A detailed mapping was carried out for 59 selected research papers from the topographic area, delay aspects, and project type to understand and establish the research gaps in the previous studies’ construction delay. This holistic review aims to understand the existing research gaps in construction delay for new research studies. However, as proposed in this research, one of the futuristic studies establishes the model relationship between the construction delay and the success factors in the areas of lack of research, type of projects, or the delay aspects (refer to Tables 5 and 6).

In the third step, groups and relevant delay factors of employer-caused delays are established. Previously, researchers categorized the construction delay factors in different ways and groups. For instance, Alaghbari et al. [70] grouped the delay factors into categories according to how they operate contractually: “Excusable and compensable,” “Nonexcusable, and noncompensable,” and “Concurrent.” Subsequently, the construction delay factors were categorized based on the various aspects of delay, such as social, technical, and financial. Therefore, in the present study, the delay aspects are categorized according to the following proposed aspects:(i)Managerial aspects mainly fall under (but are not limited to) the following types: leadership and staff management, planning capacity, and communication skills.(ii)Social coordination aspects mainly fall under (but are not limited to) the following types: construction culture, import of foreign labor, and laborers’ ability to speak the local language.(iii)Technical aspects mainly fall under (but are not limited to) the following types: construction experience, qualifications, and skills in using planning software, construction equipment technology, BIM technology, design defects, and construction defects.(iv)Financial aspects mainly fall under (but are not limited to) the following types: procurement, client fund, client payments, letter of the purchase order and its financial procedure, sub-contractor payments, cost of materials, cost of hiring skilled laborers, indirect cost, prolongation cost, and cash flow variations and changes.(v)Contractual aspects mainly fall under (but are not limited to) the following types: contractual capacity/knowledge, knowledge of contractual obligations, breach of contract, and claims.

Tables 7 and 8 present a timeline summary analysis (for the targeted research papers) to evaluate the research gaps of addressing the construction delay and the employer delays in traditional and BIM-enabled projects from 2007 until 2021. The review shows that the BIM researchers are increasingly interested in BIM technology’s influence in addressing or reducing the construction delays or the employer construction delays. Moreover, the table also shows that the gap to address the construction delays or the employer delay from a holistic perspective is continuing. Considering the data summary presented in Table 7, traditional projects are still showing research gaps related to partial addressing for the delay aspects; these research gaps still existing are: (1) gap in addressing the construction delay from a holistic perspective; (2) gap in reviewing the construction delays and the employer delay in some specific projects such as airports. For BIM projects, it is noticeable by reviewing the data summary presented in Table 8 that the BIM research papers became more interested in the BIM benefits in addressing the construction delays, including the employer delays.

After the delay aspects were identified, a thorough review of the previous studies related to construction delays was considered to gather the employer-caused delay factors collectively. Thirty-one employer-caused delay factors were gathered and categorized, as listed in Table 9.

In the fourth step, BIM implementation strategy factors were collected from the literature review, and BIM barriers or obstacles are also obtained. In this step, the BIM factors that specifically help employers address their delay and the delay risk are collected. Tables 10 and 11 list the BIM implementation strategy factors and BIM barrier factors gathered collectively from an overall review of 130 research papers on the use of BIM in construction. In the fifth step, the research framework is established based on the previous studies’ results. It is suggested that the relationships between the success factors and employer-caused delay factors be analyzed while defining hypothesis relationships to establish a proper understanding of the relationships between the employer-caused delay factors and their relevant success factors. This is suggested to ensure that the BIM implementation strategy and BIM barrier factors are considered in the present study.

Figure 3 presents the proposed research model to establish an understanding of the relationships between the employer-caused delay factors and their success factors by considering the project benchmark characteristics (PBCs), external project environments (PEEs), BIM implementation strategy factors (BSFs), and BIM barrier factors (BBs) as moderators for the relationship model. The employer-caused delay model-success relationships form an essential part of the framework to address employer-caused delays; principally, the model illustrates the relationships among the delay-success data collected from a questionnaire that needs to be developed in the literature review. In principle, the moderator model tests whether the dependent and independent variables’ predicted relationship differs during interference by other independent variables. The moderator variables affect the strength or direction of the relationship outcome. PBCs and PEEs affect the relationship between success factors and project delays [128130, 139]. The external environmental factor contains external factors that positively or negatively influence the project’s performance [140]. Moreover, according to several researchers, project size, project value, uniqueness of activities, project density, and project urgency are considered as major critical factors influencing project success [41, 83, 129, 130, 139]. Table 12 summarizes the factors of both the PBCs and PEEs moderator groups.

5. Results and Discussion

5.1. Research Gaps in Terms of Continents and Project Types

Table 13 indicates that most of the papers are related to Asia (72.3% with +55.7% variance from the average). In comparison, the corresponding contributions are 20.3% (3.7% variance) for Africa, 1.6% (−15.0% variance) for Oceania, 3.1% (−13.5% variance) for Europe, 0.8% (15.8% variance) for South America, and 1.9% (−14.7% variance) for Central and North America. Even though most previous studies on construction delays were related to Asia and Africa, these studies have, in most cases, adopted similar approaches such as studying similar types of projects and addressing the same group of delay factors.

Table 14 seems to suggest a lack of research related to delays in the construction of airports, modular structures, oil and gas projects, power projects, and water/sewer/irrigation projects, with the percentages of papers on these projects being 0%, 0%, 2.8%, 2.8%, and 1.4%, respectively. The project type is not identified in 46.6% of the reviewed papers.

This study has uncovered two crucial research gaps and insights from the comprehensive review. First, most of the previous studies on construction delays are from Asia. The common delay factors in Asia are mainly related to variations in orders, procurement problems, and financial difficulties. Specifically, variations in orders are the most common factor among the top 10 delay factors. The high incidence of variations in Asia orders is probably because the employers chose to commence the project early. At this time, the design drawings are not yet sufficiently detailed to prevent or reduce the need for future requirements, thereby leading to variations in orders during the construction stage. Africa has the second largest number of papers published on construction delay. Financial difficulty is the most common construction delay factor, followed by payment and material procurement delays. Financial difficulty ranks first, probably because of the lack of a proper funding system. In summary, the rankings of typical delay factors and their nature differ for each continent, mainly because of variations in the type and size of projects, construction methods, availability of precise construction specifications, construction cultures, quality standards, and funding methods.

5.2. Research Gaps in Terms of Delay Aspects

According to the proposed definitions, delay aspects are not adequately addressed by considering each aspect’s complete characteristics while identifying the matrix for the relevant delay factors obtained from studies. For example, most previous studies partially address the social aspect by considering an incomplete set of social delay factors in questionnaires. The delay factors in the reviewed papers do not cover all the phases from tendering to final construction. This scientific gap has encouraged the researchers of the present study to investigate the extent to which the previous studies have addressed the delay factors and to suggest an outline to address the gaps.

Table 15 summarizes the research gaps in the reviewed target papers concerning the delay aspects. For instance, environmental aspects are partially considered in most cases. For example, Muhwezi et al. [74] included the factor “Natural disasters (flood, hurricane, earthquake)” only, whereas Tawil et al. [79] only considered “Bad weather conditions” and “Natural disasters” under environmental aspects. Concerning contractual aspects, Muhwezi et al. [74] included incomplete contractual delay factors such as “Inadequate definition of substantial completion,” “Slowness in decision-making,” “Legal disputes between project participants,” and “Ineffective delay penalties.” Concerning technical aspects, for example, Khan [76] included the factors of “Inadequate planning and scheduling,” “Inadequate contractor experience,” “Lack of coordination at the site,” “Contractor’s lack of planning at preconstruction,” “Poor site management and supervision,” “Unsuitable management structure of the contractor,” “Lack of communication,” “Inappropriate overall organization structure,” “Poor managerial skills,” “Inadequate control over site resource allocation,” “Unsuitable leadership of contractor’s management,” and “Improper incentive policy.” Social aspects are also only partially considered. Muhwezi et al. [74] addressed social factors such as “Strike” and “Personal conflicts among the labor force.” In summary, this review highlights the collective scientific gaps in the research on delay factors for future consideration in a holistic study of delay factors.

Many of the reviewed papers did not identify the respondent sample size, which might have affected the work quality and the results’ reliability. Amoatey et al. [81] briefly mentioned that they used a purposive sampling approach; however, they did not explain how the sample was determined. Alaghbari et al. [70] used simple random sampling without mentioning the mathematical model or the equation used in this regard.

5.3. Research Gaps for BIM in Terms of Employer-Caused Delay Factors

Few papers have addressed employer-caused delay factors using BIM. For instance, Btoush and Harun [35] published a paper on minimizing Jordanian construction projects’ delays using BIM technology. They introduced three leading delay causes in the Jordanian construction industry and the corresponding BIM strategies to mitigate them; for example, hiring BIM specialists to divide the design phase into sections to address poor design choices. However, employer-caused delay factors have not been addressed adequately. El-Hawary and Nassar [141] reviewed the effect of BIM on reducing or avoiding construction claim causes; here, they studied a limited number of employer-caused delay factors such as poor communication, changes in the scope of the project, slow decision-making, payment delay, and errors and defects in the contract. The present researchers have found 38 research papers related to BIM related to a specific country or continent; most of these papers address BIM subjects in Asian countries.

Figure 4 presents a comparative chart showing the number of employer-caused delay factors addressed in traditional and BIM-enabled target papers for continents worldwide. For instance, in papers from Asia, 26 employer-caused delay factors are found for traditional projects, whereas only 11 factors are found for BIM-enabled projects. Similarly, for papers from Africa, 18 employer-caused delay factors are found for traditional projects, whereas no factors are found for BIM-enabled projects. However, it is essential to note that the graph percentages are calculated concerning the total number of employer delay factors separately in each project type.

From the perspective of BIM barriers and implementation strategies, ten BIM implementation strategy factors and seven BIM barrier factors that are considered directly related to the employer are collected. We believe that these factors have a direct influence on the relationship between the employer-caused delay factors and their corresponding success factors and propose a model (Figure 3) in which the relationships between employer-caused delay factors and success factors can be identified along with the effects of the BIM implementation through a well-designed questionnaire for a sufficient sample size. However, it is also suggested that the model should be created for continents and project types that lack sufficient research, as identified earlier in the paper.

Overall, this paper reveals the research gaps for the specific continents. It also presents a conceptual structural equation model to study the employer-caused delay-success relationships in the continents where research gaps. In summary, the paper presents the first review of comprehensive literature on delay factors and employer-caused delay factors in the construction industry. The study findings are expected to help researchers and practitioners to cope with unforeseen challenges in construction projects, particularly in cross-national projects.

5.4. Research Framework

The research framework’s objective is to identify methods to minimize the effects of delays in construction projects. Particularly, the framework focuses on methods that can prevent or reduce employer-caused delays. It is worth mentioning that a majority of the previously proposed methods to reduce the delay have focused on various management tools, whereas some methods have placed the onus on using some directional procedures to control or reduce construction delay. Figure 5 illustrates the overall structure of the research framework, which is the first to address construction delay problems by studying the relationships between the delay and success factors related to the employer, reviewing the best tool to implement the success factors, and reviewing and measuring the implementation output.

This framework has modified and adopted Cooper’s [142] five-gate framework for significant new projects. This framework can be summarized in terms of the following main phases: scoping identification, concept development, framework development, framework evaluation, and final framework development. For each phase, the activity, analysis, and outcome should be identified to build a successful framework. The proposed framework adopts a combined methodology to establish a four-stage process to address the delay problem. Stage 1 involves data collection and the development of a delay-success relationship model; here, a questionnaire is used to collect data. Stage 2 involves an action plan to implement the success factors; here, a more convenient tool to implement the success factors is determined based on the questionnaire results. Stage 3 involves reviewing and evaluating the success factor implementation using the procedure suggested by Discenza and Forman [143] and Kikwasi [144]. Stage 4 involves the measurement of success based on the findings obtained from stage 2. The implementation stage is initiated only when the goals are achieved using the KPI method.

Finally, the influences of the BIM implementation strategy factors and BIM barrier factors on the delay-success model should be reviewed and studied based on their use as moderators for the model. The multivariate analysis of the variance method is proposed to establish the relationship between countries’ results and project types with the most research gaps.

5.5. The Theoretical and Practical Contribution to the Construction Industry

From the theoretical standpoint, this study managed to identify research gaps in some projects such as airports and modular structures from the theoretical perspective. Conducting a holistic review of the leading delay factors in these projects will add a momentous influence to minimize these projects’ delay. The limited studies in construction delays in Europe, Oceania, Central, and North America have uncovered a research avenue for academic researchers to investigate the construction delays in Australia, the United States of America, and the United Kingdom.

Given that construction delays are a typical phenomenon worldwide, many studies have discovered common reasons for construction delays. The proposed framework renders specific practical strategies to address delays in BIM-enabled projects. Identifying the delay-success relationships, constructing a delay-success correlation model, providing the most convenient action plan to implement success, and reviewing it will significantly contribute to the construction delay market to minimize or address the employer-caused delay in BIM-enabled projects.

6. Conclusion

The present study focuses on the problem of employer-caused delays. These delays have many consequences such as cost and time overruns, reduced quality of completed projects, and abandonment or cancellation of projects. All these consequences lead to additional budget or associated costs. This study successfully conducted a comprehensive review of construction delays caused by the employer in specific countries in different continents worldwide by thoroughly surveying 59 research papers related to construction delay and 38 research papers related to BIM delay. The study then developed a research framework to articulate the research gaps and establish a well-defined relationship between the employer-caused delay factors and success factors considering the effects of BIM implementation strategies and barriers. The framework establishes a delay-success model hypothesis considering the available moderators such as BIM implementation factors, BIM barriers, external environmental project factors, and project characteristic factors.

The study results show that some continents show a lack of published studies from construction, some project types are missing, and delay aspects are incompletely covered; all these gaps require further research in the future. This research’s findings can be generalized to cover all types of delay aspects, delay sources (i.e., employers, contractors, and consultants), and project types.

Airports, modular structures, and power projects have been identified in this research as project types for which no previous studies have been conducted. Most of the previous studies from the field of construction are from Asia and Africa; specifically, papers from these continents comprise 84% of the target papers. In comparison, papers from Oceania comprise only 3.1% of the total target papers (59 papers). The lack of previous studies related to BIM construction delay is also presented, which appears to be in some regions such as Oceania, Europe, and North America.

This paper has introduced a research framework for the BIM effects on project success from the perspective of employer-caused delay factors. The proposed framework is designed in three parts. It is expected to provide a new dimension to construction project management and serve as a guide for employers to address the challenges of delays caused by them more effectively. The management framework application will help minimize the delays, support effective project monitoring, and handle problems.

Certain limitations of this study need to be considered and clarified. The results and conclusions are limited to the scope of the target papers. New delay causes can be extracted from different scientific papers. Nevertheless, the target papers’ sample size has been selected correctly, reflecting the research results’ validity and importance. Besides, the findings are related only to papers published in English. Only published papers are considered; that is, theses, reports, and periodicals are excluded.

Data Availability

All data, models, and codes generated or used during the study appear in the submitted article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.