Table of Contents
Laser Chemistry
Volume 2010, Article ID 140976, 27 pages
http://dx.doi.org/10.1155/2010/140976
Research Article

Oxide Thin Film Heterostructures on Large Area, with Flexible Doping, Low Dislocation Density, and Abrupt Interfaces: Grown by Pulsed Laser Deposition

Institut für Experimentelle Physik II, Fakultät für Physik und Geowissenschaften, Universität Leipzig, Linnéstraβe 5, 04103 Leipzig, Germany

Received 13 August 2010; Accepted 21 September 2010

Academic Editor: Alciviadis-Constantinos Cefalas

Copyright © 2010 Michael Lorenz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. B. Chrisey and G. H. Hubler, Eds., Pulsed Laser Deposition of Thin Films, Wiley, New York, NY, USA, 1994.
  2. R. Eason, Ed., Pulsed Laser Deposition of Thin Films—Applications-Led Growth of Functional Materials, Wiley-Interscience, Hoboken, NJ, USA, 2007.
  3. D. Dijkkamp, T. Venkatesan, and T. Venkatesan, “Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material,” Applied Physics Letters, vol. 51, no. 8, pp. 619–621, 1987. View at Publisher · View at Google Scholar
  4. B. Roas, L. Schultz, and G. Endres, “Epitaxial growth of YBa2Cu3O7x thin films by a laser evaporation process,” Applied Physics Letters, vol. 53, no. 16, pp. 1557–1559, 1988. View at Publisher · View at Google Scholar
  5. D. Bäuerle, “Laser chemical processing,” in Landolt-Börnstein New Series, Group VIII Advanced Materials and Technologies, Vol. 1 Laser Physics and Applications, Subvolume C Laser Applications, R. Poprawe, H. Weber, and G. Herziger, Eds., pp. 311–354, Springer, Berlin, Germany, 2004. View at Google Scholar
  6. M. Lorenz, “Pulsed laser deposition of ZnO-based thin films,” in Transparent Conductive Zinc Oxide. Basics and Applications in Thin Film Solar Cells, K. Ellmer, A. Klein, and B. Rech, Eds., vol. 104, chapter 7, pp. 303–358, Springer Series in Materials Science, Berlin, Germany, 2008. View at Google Scholar
  7. S. B. Ogale, Ed., Thin Films and Heterostructures for Oxide Electronics, Multifunctional Thin Films Series, edited by O. Auciello and R. Ramesh, Springer Science + Business Media, New York, NY, USA, 2005.
  8. C. Jagadish and S. Pearton, Eds., Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications, Elsevier, Amsterdam, The Netherlands, 2006.
  9. M. Lorenz, H. Hochmuth, D. Natusch et al., “Ag-doped double-sided PLD-YBCO thin films for passive microwave devices in future communication systems,” IEEE Transactions on Applied Superconductivity, vol. 9, no. 2, pp. 1936–1939, 1999. View at Publisher · View at Google Scholar
  10. M. Lorenz, H. Hochmuth, and H. Hochmuth, “High-quality Y-Ba-Cu-O thin films by PLD—ready for market applications,” IEEE Transactions on Applied Superconductivity, vol. 11, no. 1, pp. 3209–3212, 2001. View at Publisher · View at Google Scholar
  11. M. Lorenz, H. Hochmuth, D. Natusch, and M. Grundmann, “High-quality reproducible PLD Y-Ba-Cu-O:Ag thin films up to 4 inch diameter for microwave applications,” Physica C, vol. 372–376, no. 2, pp. 587–589, 2002. View at Publisher · View at Google Scholar
  12. C. Curran, Gepulste Laserabscheidung von Aurivillius-Phasen für ferroelektrische dunne Schichten, Ph.D. thesis, Martin-Luther-Universität Halle-Wittenberg, 1997.
  13. R. Klarmann, Laserdeposition ferroelektrischer (Pb0.92La0.08)(Zr0.65Ti0.35)O3-Schichten auf Edelstahlsubstraten, Ph.D. thesis, Universität Augsburg (Shaker, Aachen), 2000.
  14. G. Köbernik, Präparation und Charakterisierung ferroelektrischer perowskitischer Multilagen, Ph.D. thesis, Technische Universität Dresden, 2004.
  15. M. Maier, In-situ Präparation von komplexen supraleitenden und ferroelektrischen Heterostrukturen mittels gepulster Laser Deposition, Ph.D. thesis, Universität Mainz, 2001.
  16. M. Mertin, Modellierung des PLD-Prozesses zur Abscheidung elektrokeramischer Dünnschichten, Ph.D. thesis, D82 RWTH Aachen (Shaker Aachen), 1996.
  17. A. I. Petraru, Optical and electro-optical properties of BaTiO3 thin films and Mach-Zehnder waveguide modulators, Ph.D. thesis, Universität Köln, 2003.
  18. M. Siegert, Wachstumsuntersuchungen an Bariumtitanat-Dünnschichten, hergestellt mit gepulster Laserdeposition, Ph.D. thesis, Universität Köln, 2001.
  19. S. Bar, Crystalline, rare-earth-doped sesquioxide PLD-films on α-alumina, Ph.D. thesis, Universität Hamburg, Göttingen, Germany, 2004.
  20. J. Goldfuß, Herstellung und Modifizierung heteroepitaktischer Oxidschichten auf Si, Ph.D. thesis, Universität Augsburg (Verlag für Wissenschaft und Forschung), Berlin, Geramny, 2005.
  21. B. Hobein, Herstellung von dünnen Elektrolytschichten mittels Laserablation und Kathodenzerstaubüng für Hochtemperatur-Brennstoffzellen, Ph.D. thesis, RWTH Aachen, 2003.
  22. R. Hühne, Textur- und Mikrostrukturentwicklung bei der ionenstrahlunterstutzten Laserdeposition von MgO, Ph.D. thesis, Technische Universität Dresden, 2001.
  23. B. Keiper, Ionengestützte Laserpulsabscheidung von Oxidschichten für optische Anwendungen, Ph.D. thesis, Technische Universität Chemnitz, 1997.
  24. Y. Kuzminykh, Crystalline, Rare-Earth-doped Sesquioxide and YAG PLD -Films, Ph.D. thesis, Universität Hamburg, 2006.
  25. L. Ferchland, Untersuchungen zum Wachstum und zur Passivierung von dünnen Schichten aus Hochtemperatur-Supraleitern für die Anwendung bei Sensorbauelementen, Ph.D. thesis, Fortschritt- Berichte VDI-Reihe 9 Elektronik/Mikro- und Nanotechnik, Nr. 320 (VDI-Verlag Düsseldorf), 2000.
  26. B. Schey, Laserdeposition großflachiger YBa2Cu3O7-x-Schichten auf einkristallinen und technischen Substraten mit Textur-Untersuchungen zur ionenunterstutzten Laserablation von Ceroxid, Ph.D. thesis, Universität Augsburg (Shaker, Aachen), 1998.
  27. B. Worz, Wachstum biaxial texturierter NiO-Schichten auf chemisch behandelten Ni-5%W-RABiTS und gepulste Laserdeposition epitaktischer Schichten für die Herstellung supraleitender YBa2Cu3O7−δ—Bänder, Ph.D. thesis, Universität Augsburg (Mensch & Buch Verlag Berlin 2004), 2003.
  28. J. Hohage, Synthese von Bornitridschichten mittels PLD-Verfahren, Ph.D. thesis, Technische Universität Dresden, 2004.
  29. S. Six, Synthese epitaktischer Aluminiumoxidschichten mittels ionenstrahlgestützter Laserablation, Ph.D. thesis, Universität Augsburg (Mensch & Buch Verlag Berlin), 2001.
  30. A. Gorbunoff, Laser-Assisted Synthesis of Nanostructured Materials, Habilitation thesis, TU Dresden, Fortschritt-Berichte VDI-Reihe 9 Elektronik/Mikro- und Nanotechnik, Nr. 357 (VDI-Verlag Düsseldorf), 2002.
  31. L. Roussak, Herstellung und Charakterisierung von epitaktischen 2(ZnD x(CuInD2)1-x —Hetero- und Doppelheteroschichtstrukturen für D = S, Se und Te mittels Pulsed Laser Deposition (PLD), Ph.D. thesis, Universität Leipzig, 2005.
  32. S. Braun, Gefüge- und Grenzflächenbeschaffenheit von Mo/Si-Multischichten, synthetisiert mittels Puls-Laser- und Magnetron-Sputter-Deposition, Ph.D. thesis, Universität Bielefeld, 2004.
  33. U. Hannemann, Wachstum, Mikrostruktur und hartmagnetische Eigenschaften von Nd-Fe-B-Schichten, Dissertation, Technische Universität Dresden, 2004.
  34. T. Thärigen, Makroskopische Eigenschaften und Mikrostruktur von Kohlenstoff-Dünnfilmen aus Laser-Plasma- Reaktionen von Graphit mit Stickstoff-Radikalen, Siliciumnitrid oder Bornitrid, Ph.D. thesis, Universität Leipzig, 2000.
  35. Y. A. P. Mercado, Diamond-like carbon and ceramic materials as protective coatings grown by pulsed laser deposition, Ph.D. thesis, RWTH Aachen, 2003.
  36. A. Sewing, Präparation von Ni-C-Multischichten und Mischsystemen mit dem PLD-Zweistrahlverfahren und Untersuchung der thermischen Stabilität der Schichtsysteme, Ph.D. thesis, Technische Universität Dresden, 2002.
  37. C. Jin, Growth and Characterization of ZnO- and ZnO-based alloys MgxZn1-xO and MnxZn1-xO, Ph.D. thesis, North Carolina State University, Raleigh, 2003.
  38. T. Nobis, Beobachtung und Modellierung des optischen Flustergallerie-Effekts in hexagonalen Zinkoxid- Nanoresonatoren, Ph.D. thesis, Universität Leipzig, 2006.
  39. A. Rahm, Pulsed laser deposition growth and characterization of ZnO-based nanostructures, Ph.D. thesis, Universität Leipzig, 2007.
  40. C. Czekalla, Ortsaufgelöste Lumineszenz von Zinkoxid-Mikronadeln, Ph.D. thesis, Universität Leipzig, 2009.
  41. M. Brandt, Influence of the electric polarization on carrier transport and recombination dynamics in ZnO-based heterostructures,, Ph.D. thesis, Universität Leipzig, 2010.
  42. M. S. Tillack, D. Blair, and S. S. Harilal, “The effect of ionization on cluster formation in laser ablation plumes,” Report UCSD-ENG-103, University of California, San Diego, Calif, USA, August 2003. View at Google Scholar
  43. M. Lorenz, Gepulste Laser-Plasmaabscheidung (PLD) von oxidischen Dünnfilm- und Heterostrukturen, Habilitation thesis, Universität Leipzig, 2008.
  44. M. Lorenz, E. M. Kaidashev, and E. M. Kaidashev, “Optical and electrical properties of epitaxial (Mg,Cd)xZn1xO, ZnO, and ZnO:(Ga,Al) thin films on c-plane sapphire grown by pulsed laser deposition,” Solid-State Electronics, vol. 47, no. 12, pp. 2205–2209, 2003. View at Publisher · View at Google Scholar
  45. J. Narayan and B. C. Larson, “Domain epitaxy: a unified paradigm for thin film growth,” Journal of Applied Physics, vol. 93, no. 1, pp. 278–285, 2003. View at Publisher · View at Google Scholar
  46. M. Lorenz, H. Hochmuth, and D. Natusch, “Waferheizer für Saphirsubstrate, Deutsche Patentanmeldung,” Az. DE 102 55 453.7 vom 28.11.2002 (über Robert BOSCH GmbH Stuttgart).
  47. S. Ohashi, M. Lippmaa, N. Nakagawa, H. Nagasawa, H. Koinuma, and M. Kawasaki, “Compact laser molecular beam epitaxy system using laser heating of substrate for oxide film growth,” Review of Scientific Instruments, vol. 70, p. 178, 1999. View at Google Scholar
  48. M. Lorenz, A. Rahm, and A. Rahm, “Self-organized growth of ZnO-based nano-and microstructures,” Physica Status Solidi B, vol. 247, no. 6, pp. 1265–1281, 2010. View at Publisher · View at Google Scholar
  49. C. Grüner, Untersuchung des PLD-Laserplasmas mittels Optischer Emissionsspektroskopie, M.S. thesis, University Leipzig, Institute for Experimental Physics II, 2009.
  50. M. Benamara, Z. Liliental-Weber, and Z. Liliental-Weber, “The role of the multi buffer layer technique on the structural quality of GaN,” MRS Internet Journal of Nitride Semiconductor Research, vol. 5S1, W5.8, 2000. View at Google Scholar
  51. Y. Ralchenko, A. E. Kramida, J. Render, and the NIST ASD Team, “NIST Atomic Spectra Database version 3.1.5.,” National Institute of Standards and Technology, Gaithersburg, Md, USA, September 2009, http://physics.nist.gov/asd3.
  52. J. E. Sansonetti and W. C. Martin, Handbook of Basic Atomic Spectroscopic Data, 2000.
  53. D. R. Lide, Handbook of Chemistry and Physics, CRC Press, Boca Raton, Fla, USA, 73rd edition, 1993.
  54. M. Lorenz, M. Brandt, G. Wagner, H. Hochmuth, G. Zimmermann, H. von Wenckstern, and M. Grundmann, “MgZnO:P homoepitaxy by pulsed laser deposition: pseudomorphic layer-by-layer growth and high electron mobility,” in Zinc Oxide Materials and Devices IV, vol. 7217 of Proceedings of SPIE, San Jose, Calif, USA, January 2009. View at Publisher · View at Google Scholar
  55. M. Lorenz, H. Hochmuth, H. Börner, D. Natusch, and K. Kreher, “Large area pulsed laser deposition of YBCO thin films and buffer layers on 3-inch wafers,” in Materials Research Society Symposium Proceedings, vol. 341 of Epitaxial Oxide Thin Films and Heterostructures, pp. 189–194, San Francisco, Calif, USA, April 1994.
  56. H. Hochmuth and M. Lorenz, “Inductive determination of the critical current density of superconducting thin films without lateral structuring,” Physica C, vol. 220, no. 1-2, pp. 209–214, 1994. View at Google Scholar
  57. G. Kästner, D. Hesse, M. Lorenz, R. Scholz, N. D. Zakharov, and P. Kopperschmidt, “Microcracks observed in epitaxial thin films of YBa2Cu3O7δ and GdBa2Cu3O7δ,” Physica Status Solidi A, vol. 150, no. 1, pp. 381–394, 1995. View at Publisher · View at Google Scholar
  58. H. Hochmuth and M. Lorenz, “Side-selective and non-destructive determination of the critical current density of double-sided superconducting thin films,” Physica C, vol. 265, no. 3-4, pp. 335–340, 1996. View at Google Scholar
  59. M. Lorenz, H. Hochmuth, D. Natusch, H. Börner, G. Lippold, K. Kreher, and W. Schmitz, “Large-area double-side pulsed laser deposition of YBa2Cu3O7x thin films on 3-in. sapphire wafers,” Applied Physics Letters, vol. 68, no. 23, pp. 3332–3334, 1996. View at Publisher · View at Google Scholar
  60. M. Lorenz, H. Hochmuth, and H. Hochmuth, “Large-area and double-sided pulsed laser deposition of Y-Ba-Cu-O thin films applied to HTSC microwave devices,” IEEE Transactions on Applied Superconductivity, vol. 7, no. 2, pp. 1240–1243, 1997. View at Google Scholar
  61. M. Lorenz, H. Hochmuth, D. Natusch, and K. Kreher, “Highly reproducible large-area and double-sided pulsed laser deposition of HTSC YBCO:Ag thin films for microwave applications,” Applied Physics A, vol. 69, no. 7, pp. S905–S911, 1999. View at Publisher · View at Google Scholar
  62. M. Lorenz, H. Hochmuth, M. Grundmann, E. Gaganidze, and J. Halbritter, “Microwave properties of epitaxial large-area Ca-doped YBa2Cu3O7δ thin films on r-plane sapphire,” Solid-State Electronics, vol. 47, no. 12, pp. 2183–2186, 2003. View at Publisher · View at Google Scholar
  63. T. Kaiser, Nichtlineare Hochfrequenzeigenschaften von Hochtemperatursupraleiter-Filmen, Ph.D. thesis, Bergische Universität Gesamthochschule Wuppertal, 1998.
  64. R. Semerad, B. Utz, P. Berberich, W. Prusseit, and H. Kinder, “Coevaporation of YBaCuO films up to 9-inches diameter,” in Applied Superconductivity, Inst. Phys. Conf. Ser. No. 148, p. 847, IOP, Bristol, UK, 1995. View at Google Scholar
  65. J. Geerk, A. Zaitsev, and A. Zaitsev, “A 3-chamber deposition system for the simultaneous double-sided coating of 5-inch wafers,” IEEE Transactions on Applied Superconductivity, vol. 11, no. 1, pp. 3856–3858, 2001. View at Publisher · View at Google Scholar
  66. Y. Lemaître, D. Mansart, B. Marcilhac, J. C. Mage, and J. Siejka, “Double-sided sputtering deposition of YBa2Cu3O7δ thin films on 2′′LaAlO3 wafers for microwave applications,” IEEE Transactions on Applied Superconductivity, vol. 9, no. 2, pp. 2363–2366, 1999. View at Publisher · View at Google Scholar
  67. D. W. Face, F. M. Pellicone, R. J. Small, L. Bao, M. S. Warrington, and C. Wilker, “Tl2Ba2CaCu2O8 and YBa2Cu3O7 films on large area MgO and sapphire substrates for high power microwave and rf applications,” IEEE Transactions on Applied Superconductivity, vol. 9, no. 2, pp. 2492–2495, 1999. View at Google Scholar
  68. M. Klauda, T. Kässer, and B. Mayer, “Superconductors and cryogenics for future communication systems,” IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 7, pp. 1227–1239, 2000. View at Publisher · View at Google Scholar
  69. T. Kässer, M. Viertel, R. Bölter, C. Neumann, and F. Schnell, “Superconductors and cryotechnology for space communications,” Physica C, vol. 372–376, no. 1, pp. 489–492, 2002. View at Publisher · View at Google Scholar
  70. R. Schwab, R. Heidinger, J. Geerk, F. Ratzel, M. Lorenz, and H. Hochmuth, “Surface impedance mapping at cryogenic temperatures of HTSC wafers at 145 GHz,” in Proceedings of the 23th International Conference on Infrared and Millimeter Waves, Essex, UK, September 1998.
  71. R. Schwab, Ortsaufgelöste Untersuchung des Oberflachenwiderstandes von epitaktischen YBa2Cu3O7-x- Dünnschichten mit Millimeterwellen, Dissertation, FZ Karlsruhe/Universität Karlsruhe, 1999.
  72. H. Frenzel, A. Lajn, H. von Wenckstern et al., “Recent progress on ZnO-based metal-semiconductor field-effect transistors and their application in transparent integrated circuits,” Advanced Materials. View at Publisher · View at Google Scholar · View at PubMed
  73. H. Frenzel, A. Lajn, H. von Wenckstern, and M. Grundmann, “Ultrathin gate-contacts for metal-semiconductor field-effect transistor devices: an alternative approach in transparent electronics,” Journal of Applied Physics, vol. 107, no. 11, Article ID 114515, 2010. View at Publisher · View at Google Scholar
  74. B. K. Meyer, H. Alves, and H. Alves, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Physica Status Solidi B, vol. 241, no. 2, pp. 231–260, 2004. View at Publisher · View at Google Scholar
  75. H. von Wenckstern, S. Weinhold, G. Biehne, R. Pickenhain, H. Schmidt, H. Hochmuth, and M. Grundmann, “Donor levels in ZnO,” Advances in Solid State Physics, vol. 45, pp. 263–274, 2005. View at Google Scholar
  76. M. Brandt, M. Lange, and M. Lange, “Control of interface abruptness of polar MgZnO/ZnO quantum wells grown by pulsed laser deposition,” Applied Physics Letters, vol. 97, no. 5, Article ID 052101, 2010. View at Publisher · View at Google Scholar
  77. S. Heitsch, G. Zimmermann, and G. Zimmermann, “Interface and luminescence properties of pulsed laser deposited MgxZn1xO/ZnO quantum wells with strong confinement,” in Materials Research Society Symposium Proceedings, vol. 957, pp. 229–234, Boston, Mass, USA, November 2007.
  78. C. Sturm, H. Hilmer, R. Schmidt-Grund, and M. Grundmann, “Observation of strong exciton-photon coupling at temperatures up to 410 K,” New Journal of Physics, vol. 11, Article ID 073044, 2009. View at Publisher · View at Google Scholar
  79. H. Hilmer, C. Sturm, R. Schmidt-Grund, B. Rheinländer, and M. Grundmann, “Observation of strong light-matter coupling by spectroscopic ellipsometry,” Superlattices & Microstructures, vol. 47, no. 1, pp. 19–23, 2010. View at Publisher · View at Google Scholar
  80. R. Schmidt-Grund, H. Hilmer, and H. Hilmer, “Two-dimensional confined photonic wire resonators—strong light-matter coupling,” Physica Status Solidi B, vol. 247, no. 6, pp. 1351–1364, 2010. View at Publisher · View at Google Scholar
  81. C. Bundesmann, N. Ashkenov, and N. Ashkenov, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Applied Physics Letters, vol. 83, no. 10, pp. 1974–1976, 2003. View at Publisher · View at Google Scholar
  82. Q. Xu, L. Hartmann, and L. Hartmann, “Metal-insulator transition in Co-doped ZnO: magnetotransport properties,” Physical Review B, vol. 73, no. 20, Article ID 205342, 2006. View at Publisher · View at Google Scholar
  83. Q. Xu, L. Hartmann, and L. Hartmann, “Magnetoresistance in pulsed laser deposited 3d transition metal doped ZnO films,” Thin Solid Films, vol. 515, no. 4, pp. 2549–2554, 2006. View at Publisher · View at Google Scholar
  84. H. Schmidt, M. Diaconu, and M. Diaconu, “Electrical and optical spectroscopy on ZnO:Co thin films,” Applied Physics A, vol. 88, no. 1, pp. 157–160, 2007. View at Publisher · View at Google Scholar
  85. M. Ungureanu, H. Schmidt, and H. Schmidt, “A comparison between ZnO films doped with 3d and 4f magnetic ions,” Thin Solid Films, vol. 515, no. 24, pp. 8761–8763, 2007. View at Publisher · View at Google Scholar
  86. H. von Wenckstern, G. Benndorf, and G. Benndorf, “Properties of phosphorus doped ZnO,” Applied Physics A, vol. 88, no. 1, pp. 125–128, 2007. View at Publisher · View at Google Scholar
  87. C. Bundesmann, A. Rahm, M. Lorenz, M. Grundmann, and M. Schübert, “Infrared optical properties of MgxZn1xO thin films (0≤x≤1): long-wavelength optical phonons and dielectric constants,” Journal of Applied Physics, vol. 99, no. 11, Article ID 113504, 2006. View at Publisher · View at Google Scholar
  88. R. Schmidt-Grund, A. Carstens, and A. Carstens, “Refractive indices and band-gap properties of rocksalt MgxZn1xO (0.68≤x≤1),” Journal of Applied Physics, vol. 99, no. 12, Article ID 123701, 2006. View at Publisher · View at Google Scholar
  89. S. Heitsch, G. Zimmermann, and G. Zimmermann, “Luminescence and surface properties of MgxZn1xO thin films grown by pulsed laser deposition,” Journal of Applied Physics, vol. 101, no. 8, Article ID 083521, 2007. View at Publisher · View at Google Scholar
  90. Q. Xu, H. Schmidt, and H. Schmidt, “Room temperature ferromagnetism in Nd- and Mn-codoped ZnO films,” Journal of Physics D, vol. 41, no. 10, Article ID 105012, 2008. View at Publisher · View at Google Scholar
  91. H. von Wenckstern, H. Schmidt, and H. Schmidt, “Anionic and cationic substitution in ZnO,” Progress in Solid State Chemistry, vol. 37, no. 2-3, pp. 153–172, 2009. View at Publisher · View at Google Scholar
  92. M. Lange, C. P. Dietrich, C. Czekalla et al., “Luminescence properties of ZnO/Zn1xCdxO/ZnO double heterostructures,” Journal of Applied Physics, vol. 107, no. 9, Article ID 093530, 8 pages, 2010. View at Google Scholar
  93. D. Spemann, E. M. Kaidashev, M. Lorenz, J. Vogt, and T. Butz, “Ion beam analysis of epitaxial (Mg,Cd)xZn1xO and ZnO:(Li, Al, Ga, Sb) thin films grown on c-plane sapphire,” Nuclear Instruments and Methods in Physics Research, Section B, vol. 219-220, no. 1-4, pp. 891–896, 2004. View at Publisher · View at Google Scholar
  94. M. Khalid, M. Ziese, and M. Ziese, “Defect-induced magnetic order in pure ZnO films,” Physical Review B, vol. 80, no. 3, Article ID 035331, 2009. View at Publisher · View at Google Scholar
  95. R. Waser, Ed., Nanoelectronics and Information Technology—Advanced Electronic Materials and Novel Devices, Wiley-VCH, Weinheim, Germany, 2003.
  96. J. F. Scott, “Applications of modern ferroelectrics,” Science, vol. 315, no. 5814, pp. 954–959, 2007. View at Publisher · View at Google Scholar · View at PubMed
  97. M. Lorenz, H. Hochmuth, M. Schallner, R. Heidinger, D. Spemann, and M. Grundmann, “Dielectric properties of Fe-doped BaxSr1xTiO3 thin films on polycrystalline substrates at temperatures between -35 and +85C,” Solid-State Electronics, vol. 47, no. 12, pp. 2199–2203, 2003. View at Publisher · View at Google Scholar
  98. L. C. Sengupta and S. Sengupta, “Electrical properties of doped BSTO-0.6 thin films,” Materials Research Innovations, vol. 2, p. 278, 1999. View at Google Scholar
  99. S. S. Gevorgian and E. L. Kollberg, “Do we really need ferroelectrics in paraelectric phase only in electrically controlled microwave devices?” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 11, pp. 2117–2124, 2001. View at Publisher · View at Google Scholar
  100. R. R. Romanofsky et al., “616 element phased array antenna,” in Materials Research Society Symposium Proceedings, vol. 720, H 4.1.1, 2002.
  101. K. J. Choi, M. Biegalski, and M. Biegalski, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science, vol. 306, no. 5698, pp. 1005–1009, 2004. View at Publisher · View at Google Scholar · View at PubMed
  102. E. M. Kaidashev, M. Lorenz, and M. Lorenz, “High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition,” Applied Physics Letters, vol. 82, no. 22, pp. 3901–3903, 2003. View at Publisher · View at Google Scholar
  103. H. von Wenckstern, H. Schmidt, and H. Schmidt, “Homoepitaxy of ZnO by pulsed-laser deposition,” Physica Status Solidi, vol. 1, no. 4, pp. 129–131, 2007. View at Publisher · View at Google Scholar
  104. M. Lorenz, G. Wagner, and G. Wagner, “Homoepitaxial ZnO thin films by PLD: structural properties,” Physica Status Solidi C, vol. 5, no. 10, pp. 3280–3287, 2008. View at Publisher · View at Google Scholar
  105. M. Brandt, H. von Wenckstern, and H. von Wenckstern, “High electron mobility of phosphorous-doped homoepitaxial ZnO thin films grown by pulsed-laser deposition,” Journal of Applied Physics, vol. 104, no. 1, Article ID 013708, 2008. View at Publisher · View at Google Scholar
  106. H. von Wenckstern, M. Brandt, and M. Brandt, “Properties of homoepitaxial ZnO and ZnO:P thin films grown by pulsed-laser deposition,” in Zinc Oxide Materials and Devices III, vol. 6895 of Proceedings of SPIE, San Jose, Calif, USA, January 2008. View at Publisher · View at Google Scholar
  107. M. Brandt, H. von Wenckstern, C. Dietrich et al., “Dopant activation in homoepitaxial MgZnO:P thin films,” Journal of Vacuum Science & Technology B, vol. 27, p. 1604, 2009. View at Google Scholar
  108. Y. W. Heo, S. J. Park, K. Ip, S. J. Pearton, and D. P. Norton, “Transport properties of phosphorus-doped ZnO thin films,” Applied Physics Letters, vol. 83, no. 6, pp. 1128–1130, 2003. View at Publisher · View at Google Scholar
  109. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Progress in Materials Science, vol. 50, no. 3, pp. 293–340, 2005. View at Publisher · View at Google Scholar
  110. H. von Wenckstern, G. Benndorf, and G. Benndorf, “Properties of phosphorus doped ZnO,” Applied Physics A, vol. 88, no. 1, pp. 125–128, 2007. View at Publisher · View at Google Scholar
  111. M. Brandt, H. von Wenckstern, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Formation of a two-dimensional electron gas in ZnO/MgZnO single heterostructures and quantum wells,” Thin Solid Films, vol. 518, no. 4, pp. 1048–1052, 2009. View at Publisher · View at Google Scholar
  112. M. Lorenz, M. Brandt, M. Lange, G. Benndorf, H. von Wenckstern, D. Klimm, and M. Grundmann, “Homoepitaxial MgxZn1xO (0 x  0.22) thin films grown by pulsed laser deposition,” Thin Solid Films, vol. 518, no. 16, pp. 4623–4629, 2010. View at Publisher · View at Google Scholar
  113. J. A. Davis and C. Jagadish, “Ultrafast spectroscopy of ZnO/ZnMgO quantum wells,” Laser and Photonics Reviews, vol. 3, no. 1-2, pp. 85–96, 2009. View at Publisher · View at Google Scholar
  114. T. M. Shaw, A. Gupta, M. Y. Chern, P. E. Batson, R. B. Laibowitz, and B. A. Scott, “Atomic scale oxide superlattices grown by RHEED controlled pulsed laser deposition,” Journal of Materials Research, vol. 9, no. 10, pp. 2566–2573, 1994. View at Google Scholar
  115. T. Matsumoto, H. Tanaka, K. Kouguchi, T. Kawai, and S. Kawai, “A scanning tunneling microscopy study of laser molecular beam epitaxy on SrTiO3(100) surface,” Surface Science, vol. 312, no. 1-2, pp. 21–30, 1994. View at Google Scholar
  116. D. H. A. Blank, G. J. H. M. Rijnders, G. Koster, and H. Rogalla, “In-situ monitoring during pulsed laser deposition using RHEED at high pressure,” Applied Surface Science, vol. 127–129, pp. 633–638, 1998. View at Google Scholar
  117. G. Koster, Artificially layered oxides by Pulsed Laser Deposition, Ph.D. thesis, Universiteit Twente, Enschede, The Netherlands, 1999.
  118. J. Klein, Epitaktische Heterostrukturen aus dotierten Manganaten, Ph.D. thesis, Universität Köln, 2001.
  119. H. Y. Hwang, “Atomic control of the electronic structure at complex oxide heterointerfaces,” MRS Bulletin, vol. 31, no. 1, pp. 28–35, 2006. View at Google Scholar